• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 16, No 4 (2013)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Analysis of batch and repeated fedbatch productions of Candida utilis cell mass using mathematical modeling method | Gao | Electronic Journal of Biotechnology
doi: 10.2225/vol16-issue4-fulltext-2
Electronic Journal of Biotechnology, Vol 16, No 4 (2013)

Analysis of batch and repeated fedbatch productions of Candida utilis cell mass using mathematical modeling method

Ling Gao, Yutian Lin, Guoli Liu, Huibin Lin, Jianqiang Lin



Abstract

Background: Candida utilis is widely used in bioindustry, and its cell mass needs to be produced in a cost effective way. Process optimization based on the experimental results is the major way to reduce the production cost. However, this process is expensive, time consuming and labor intensive. Mathematical modeling is a useful tool for process analysis and optimization. Furthermore, sufficient information can be obtained with fewer experiments by using the mathematical modeling, and some results can be predicted even without doing experiments.

Results: In the present study, we performed the mathematical modeling and simulation for the cell mass production of Candida utilis based on limited batch and repeated fedbatch experiments. The model parameters were optimized using genetic algorithm (GA), and the processes were analyzed.

Conclusions: Taken together, this newly developed method is efficient, labor saving and cost effective.




Full Text: | Full Text | Reprint PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology