• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 15, No 6 (2012)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Application of palm pressed fiber as a carrier for ethanol production by Candida shehatae TISTR5843 | Riansa-ngawong | Electronic Journal of Biotechnology
doi: 10.2225/vol15-issue6-fulltext-1
Electronic Journal of Biotechnology, Vol 15, No 6 (2012)

Application of palm pressed fiber as a carrier for ethanol production by Candida shehatae TISTR5843

Wiboon Riansa-ngawong, Maneewan Suwansaard, Poonsuk Prasertsan



Abstract

Palm pressed fiber (PPF) is a clean and renewable lignocellulosic material. The PPF and delignified PPF (DPPF) were used as a carrier for immobilization of Candida shehatae TISTR5843 in bioethanol production. PPF was pre-treated by milling to obtain small particles, whereas DPPF was the delignification of PPF using NaClO2. C. shehatae TISTR5843 was grown in modified yeast extract- malt (YM) medium at 30 ± 2ºC on an orbital shaker at 150 rpm for batch and repeated batch fermentation. In the batch system, immobilized cells on a small size, less than 0.5 mm, of DPPF (sDPPF) gave the maximum ethanol production of 11.5 g L-1 at 24 hrs cultivation period. The ethanol concentration and ethanol yield of sDPPF were 6.2% and 6.8% higher (ethanol production 11.5 g L-1, ethanol yield 0.47 g g-1) than those of free cells (ethanol production 10.8 g L-1, ethanol yield 0.44 g g-1) after 36 hrs of cultivation. In contrast, the small size of PPF (sPPF) was selected as a carrier in repeated batch fermentation for cost effectiveness. The ethanol productivity of immobilized yeast cells in repeated batch fermentations was 45.2-51.6% greater than that obtained from batch fermentations. The immobilized cells on sPPF improved the ethanol production and could be reused 4 times with retaining the activity of 93%. In conclusion, PPF is a potential carrier in the immobilization system. The pre-treatment of PPF increases the surface area that enhances cell adsorption and ethanol production by C. shehatae TISTR5843.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2022 by Electronic Journal of Biotechnology