• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 15, No 4 (2012)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Effect of extrinsic and intrinsic parameters on inulinase production by Aspergillus niger ATCC 20611 | Dinarvand | Electronic Journal of Biotechnology
doi: 10.2225/vol15-issue4-fulltext-9
Electronic Journal of Biotechnology, Vol 15, No 4 (2012)

Effect of extrinsic and intrinsic parameters on inulinase production by Aspergillus niger ATCC 20611

Mojdeh Dinarvand, Arbakariya B. Ariff, Hassan Moeini, Malihe Masomian, Seyed Sadegh Mousavi, Reza Nahavandi, Shuhaimi Mustafa



Abstract

Background: Inulinase is a versatile enzyme from glycoside hydrolase family which targets the β-2, 1 linkage of fructopolymers. In the present study, the effect of medium composition and culture conditions on inulinase production by Aspergillus niger ATCC 20611 was investigated in shake-flasks. Results: The highest extracellular inulinase (3199 U/ ml) was obtained in the presence of 25% (w/v) sucrose, 0.5% (w/v) meat extract, 1.5% (w/v) NaNO3 and 2.5 mM (v/v) Zn2+, at initial pH of 6.5, temperature 35ºC and 6% (v/v) of spores suspension in the agitation speed of 100 rpm. Surfactants showed an inhibitory effect on enzyme production. The optimum temperature for inulinase activity was found to be 50ºC. TLC analysis showed the presence of both exo- and endo-inulinase. Conclusion: Sucrose, Zn2+, and aeration were found to be the most effective elements in inulinase production by A. niger ATCC 20611. TLC analysis also showed that the crude enzyme contained both endo and exo-inulinases. The strain is suggested as a potential candidate for industrial enzymatic production of fructose from inulin.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology