• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 15, No 4 (2012)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Supplementary Files
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Ceftiofur-loaded PHBV microparticles: A potential formulation for a long-acting antibiotic to treat animal infections | Vilos | Electronic Journal of Biotechnology
doi: 10.2225/vol15-issue4-fulltext-2
Electronic Journal of Biotechnology, Vol 15, No 4 (2012)

Ceftiofur-loaded PHBV microparticles: A potential formulation for a long-acting antibiotic to treat animal infections

Cristian Vilos, Luis Constandil, Natalia Herrera, Paula Solar, Jorge Escobar-Fica, Luis Alberto Velásquez



Abstract

Background: The infectious diseases in the livestock breeding industry represent a significant drawback that generates substantial economic loss and have led to the indiscriminate use of antibiotics. The formulation of polymeric microparticles loaded with antibiotics for veterinary use can: reduce the number of required doses; protect the drug from inactivation; and maintain a sustained-release of the antibiotic drug at effective levels. Accomplishing all of these goals would have a significant economic and animal health impact on the livestock breeding industry. Results: In this work, we formulated ceftiofur-loaded PHBV microparticles (PHBV-CEF) with a spherical shape, a smooth surface and diameter sizes between 1.65 and 2.37 μm. The encapsulation efficiency was 39.5 ± 1.1% w/w, and we obtained a sustained release of ceftiofur in PBS-buffer (pH 7.4) over 7 days. The antibacterial activity of ceftiofur was preserved after the encapsulation procedure, and toxicity of PHBV-CEF microparticles evaluated by MTS was represented by an IC50 > 10 mg/mL. Conclusions: Our results suggest that PHBV-CEF particles have a potential application for improving the treatment of infectious diseases in the livestock breeding industry.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology