• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 15, No 3 (2012)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Modelling of the biofiltration of reduced sulphur compounds through biotrickling filters connected in series: Effect of H2S | Silva | Electronic Journal of Biotechnology
doi: 10.2225/vol15-issue3-fulltext-7
Electronic Journal of Biotechnology, Vol 15, No 3 (2012)

Modelling of the biofiltration of reduced sulphur compounds through biotrickling filters connected in series: Effect of H2S

Javier Silva, Marjorie Morales, Manuel Cáceres, Paulina Morales, Germán Aroca



Abstract

Background: The behaviour of two biotrickling filters connected in serie (BTF) inoculated with Acidithiobacillus thiooxidans and Thiobacillus thioparus, biodegrading hydrogen sulphide (H2S) and dimethyl sulphide (DMS) simultaneously were studied. A model which considers gas to liquid mass transfer and biooxidation in the biofilm attached to the support is developed. Additionally, a fixed bed biotrickling filter where the microorganism is immobilized in a biofilm which degrades a mixture of H2S and DMS is implemented. Validation of the model was carried out using experimental data obtained at different H2S and DMS loads. Results: The inhibitory effect caused by the presence of H2S on the DMS is observed, which is evidenced by the decrease of the DMS removal efficiency from 80 to 27%, due to the preference that T. thioparus has by simple metabolism. H2S is not affected by the DMS, with removal efficiencies of 95 to 97%, but it decreases at high concentrations of the compound, due to the inhibition of metabolism by high H2S input loads. The model which describes the BFT fits successfully with the experimental results and it has a high sensitivity to inhibition parameters. Conclusions: It is shown that the microorganism has a high affinity for H2S, producing substrate inhibition when the concentration is high. The H2S is able to inhibit the DMS biooxidation, whereas the DMS does not affect the H2S biooxidation.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology