• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 14, No 2 (2011)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Biosorption kinetics of a direct azo dye Sirius Blue K-CFN by Trametes versicolor | Erden | Electronic Journal of Biotechnology
doi: 10.2225/vol14-issue2-fulltext-8
Electronic Journal of Biotechnology, Vol 14, No 2 (2011)

Biosorption kinetics of a direct azo dye Sirius Blue K-CFN by Trametes versicolor

Emre Erden, Yasin Kaymaz, Nurdan Kasikara Pazarlioglu



Abstract

In this study, lyophilized Trametes versicolor biomass is used as a sorbent for biosorption of a textile dye, Sirius Blue K-CFN, from an aqueous solution. The batch sorption was studied with respect to dye concentration, adsorbent dose and equilibrium time. The effect of pH and temperature on dye uptake was also investigated and kinetic parameters were determined. Optimal initial pH (3.0), equilibrium time (2 hrs), initial dye concentration ( 100 mg l-1) and biomass concentration (1.2 mg l-1) were determined at 26ºC. The maximum biosorption capacity (qmax) of Sirius Blue K-CFN dye on lyophilized T. versicolor biomass is 62.62 mg/g. The kinetic and isotherm studies indicated that the biosorption process obeys to a pseudo-second order model and Langmuir isotherm model. In addition, the biosorption capacities of fungal biomass compared to other well known adsorbents such as activated carbon and Amberlite, fungal biomass biosorptions capacities were found to be more efficient.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2022 by Electronic Journal of Biotechnology