• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 13, No 2 (2010)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Degradation of citronellol, citronellal and citronellyl acetate by Pseudomonas mendocina IBPse 105 | Tozoni | Electronic Journal of Biotechnology
doi: 10.2225/vol13-issue2-fulltext-8
Electronic Journal of Biotechnology, Vol 13, No 2 (2010)

Degradation of citronellol, citronellal and citronellyl acetate by Pseudomonas mendocina IBPse 105

Daniela Tozoni, Jucimar Zacaria, Regina Vanderlinde, Ana Paula Longaray Delamare, Sergio Echeverrigaray



Abstract

The purpose of this work was to stud the biodegradation of citronellol, citronellal and citronellyl acetate by a soil Pseudomonas mendocina strain (IBPse 105) isolated from a Cymbopogon windelandi field. This strain efficiently used citronellol, citronellal, citronellyl acetate and myrcene as sole source of carbon, but was not able to grow on other 15 monoterpenoids evaluated. Gas chromatography-mass spectrometry (GC-MS) analysis of metabolites accumulation during P. medocina IBPse 105 growth on citronellol showed that this strain uses the citronellol catabolic pathway described for other species of the genus. IBPse 105 degradation of citronellyl acetate initiates by its hydrolysis to citronellol. The mini-Tn5 insertion in mutant IBPse 105-303, impaired in citronellol degradation, but able to grow on citronellal, was located in a homologous of the P. aeruginosa atuB gene, that codifies citronellol deshydrogenase.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology