• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 13, No 1 (2010)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Development of potency assays for a plasmid containing vascular endothelial growth factor 2 | Huang | Electronic Journal of Biotechnology
doi: 10.2225/vol13-issue1-fulltext-8
Electronic Journal of Biotechnology, Vol 13, No 1 (2010)

Development of potency assays for a plasmid containing vascular endothelial growth factor 2

Li-chun Huang, Emily Chin, Yawen L. Chiang



Abstract

We have developed analytical methods to measure the biological functions of pVGI.1(VEGF2), a naked plasmid DNA product containing vascular endothelial growth factor 2 used in clinical trials for coronary artery diseases (CAD) and peripheral artery diseases (PAD). After being injected into muscles, vascular endothelial growth factor 2 (VEGF-2), presumably expressed in muscle tissues, binds to the endothelial cell receptors VEGFR2 or VEGFR3, triggering the downstream responses including cell proliferation and vascularization. As it is important to make sure clinical material is biological active, we developed a quantitative assay first to measure the receptor binding activity of the pVGI.1(VEGF2) gene product expressed by the transfected host cells, and then a qualitative assay to confirm the cell proliferation promoting activity of the expressed protein. In both assays the signals were plotted directly against input DNA concentrations used to transfect the host cells. We confirmed specificity for both assays. In addition, we demonstrated acceptable levels of spike recovery (86.7-116%), precision (largest relative standard deviation (RSD)=19.3%), linearity and range (60-140% relative potency, 15 - 35 µg/mL) for the quantitative assay. We intend to use the potency assays for routine lot release and stability studies.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology