• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 12, No 4 (2009)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Notify colleague*
  • Email the author*
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.

* Requires registration

Degradation of methomyl by the novel bacterial strain Stenotrophomonas maltophilia M1 | Mohamed | Electronic Journal of Biotechnology
doi: 10.2225/vol12-issue4-fulltext-11
Electronic Journal of Biotechnology, Vol 12, No 4 (2009)

Degradation of methomyl by the novel bacterial strain Stenotrophomonas maltophilia M1

Mervat S. Mohamed



Abstract

The use of microorganisms in the degradation and detoxification of many toxic xenobiotics, especially pesticides, is an efficient tool for the decontamination of polluted sites in the environment. A novel bacterial strain (M1) was isolated from several water samples contaminated with methomyl which is capable of degrading methomyl pesticide (1000 ppm) in the presence of 0.05% glucose. These water samples were collected from different irrigation sites in Egypt where methomyl is heavily applied. The partial sequence of 16SrRNA gene of the isolate showed the highest similarity to Stenotrophomonas maltophilia. Restriction fragment patterns of isolated plasmid DNA showed that this strain harbours two different plasmids PMa (8Kb) and PMb (5Kb). PMb succeeded to be transferred to Escherichia coli DH5α strain. This transformed strain (M2) acquired the ability to grow in the presence of methomyl (1000 ppm) and 0.05% glucose. So it was deduced that the gene responsible for the degradation process was encoded by this plasmid. The ability of the two strains M1 and M2 to degrade methomyl was detected by using solid phased extraction coupled to capillary liquid chromatography-electrospray ionization-mass spectrometry (SPE-LC-ESI-MS).




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2021 by Electronic Journal of Biotechnology