• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 10, No 4 (2007)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Notify colleague*
  • Email the author*
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.

* Requires registration

Phage-resistance of Salmonella enterica serovar Enteritidis and pathogenesis in Caenorhabditis elegans is mediated by the lipopolysaccharide | Santander | Electronic Journal of Biotechnology
doi: 10.2225/vol10-issue4-fulltext-14
Electronic Journal of Biotechnology, Vol 10, No 4 (2007)

Phage-resistance of Salmonella enterica serovar Enteritidis and pathogenesis in Caenorhabditis elegans is mediated by the lipopolysaccharide

Javier Santander, James Robeson



Abstract

Phage therapy has been used in the past as an alternative therapy against bacterial pathogens. However, phage-resistant bacterial strains can emerge. Some studies show that these phage-resistant strains are avirulent. In this study, we report that phage-resistant strains of Salmonella enterica serovar Enteritidis (hereafter S. Enteritidis) were avirulent in the Caenorhabditis elegans animal model. We isolated phage-resistant strains of S. Enteritidis ATCC 13076 by using three lytic phages (f2αSE, f3αSE and f18αSE). In these mutants, we explored different virulence factors like lipopolysaccharide (LPS), virulence plasmid (Pla), motility and type I fimbriae, all of which may have effects on virulence and could furthermore be related to phage resistance. The phage-resistant strains of S. Enteritidis showed loss of O-Polysaccharide (O-PS) and auto-agglutination, present a rough phenotype and consequently they are avirulent in the C. elegans animal model. We speculate that the O-PS is necessary for phage attachment to the S. Enteritidis cell surface.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2021 by Electronic Journal of Biotechnology