• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 2, No 3 (1999)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Isolation by PCR-based methods of a plant antifungal polygalacturonase-inhibiting protein gene | Arendse | Electronic Journal of Biotechnology
doi: 10.2225/vol2-issue3-fulltext-4
Electronic Journal of Biotechnology, Vol 2, No 3 (1999)

Isolation by PCR-based methods of a plant antifungal polygalacturonase-inhibiting protein gene

Melanie S. Arendse, Ian A. Dubery, David K. Berger



Abstract

A polygalacturonase-inhibiting protein (pgip) gene from Malus domestica cv Granny Smith apple plants was cloned by degenerate oligo-primed polymerase chain reaction (PCR) and Inverse PCR. An alignment of the pear and bean PGIP sequences was used to design degenerate PCR primers in highly conserved regions. Degenerate PCR allowed the amplification of a 351bp internal fragment of the pgip gene, termed ipgip. The DNA sequence of ipgip was used to design Inverse PCR primers. A Southern blot of apple genomic DNA probed with the ipgip fragment was used to identify restriction enzyme sites for Inverse PCR. Inverse PCR enabled cloning of the remainder of the gene, from which a composite pgip gene sequence was constructed. A new set of PCR primers were designed to the 5' and 3' ends of the gene, which allowed amplification of the full-length gene from apple genomic DNA. This method has broad application to isolation of homologues of any gene for which some sequence information is known.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology