• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 6, No 3 (2003)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
An evaluation of copper biosorption by a brown seaweed under optimized conditions | Antunes | Electronic Journal of Biotechnology
doi: 10.2225/vol6-issue3-fulltext-5
Electronic Journal of Biotechnology, Vol 6, No 3 (2003)

An evaluation of copper biosorption by a brown seaweed under optimized conditions

Wallace M. Antunes, Aderval S. Luna, Cristiane A. Henriques, Antonio Carlos Augusto da Costa



Abstract

A basic investigation into the removal of copper ions from aqueous solutions by Sargassum sp. was conducted in batch conditions. The influence of different experimental parameters such as initial pH, shaking rate, sorption time, temperature, equilibrium conditions and initial concentrations of copper ions on copper uptake was evaluated. Results indicated that for shaking rates higher than 100 rpm no significant changes in copper accumulation were observed, as well as for pH values between 3.0 and 5.0. No marked effect on the biosorption of copper was detected for temperatures between 298 and 328K. The Langmuir model better represented the sorption process, in comparison to the model of Freundlich. The process followed a second-order kinetics and its calculated activation energy was 5.2 kcal/mol. Due to its outstanding copper uptake capacity (1.48 mmol/g biomass) Sargassum sp. proved to be an excellent biomaterial for accumulating and recovering copper from industrial solutions.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology