• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 60 (2022)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Effect of pH on the conformational structure of cytochrome c and subsequent enzymatic cross-linking catalyzed by laccase | Li | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2022.07.002
Electronic Journal of Biotechnology, Vol 60 (2022)

Effect of pH on the conformational structure of cytochrome c and subsequent enzymatic cross-linking catalyzed by laccase

Du-Xin Li, Zi-Yan Qi, Jiang-Yun Liu, Jian-Qin Zhou



Abstract

Background: The aim of the present study was to investigate the effect of substrate conformational structure changes on the laccase-induced protein cross-linking. The effects of laccase amount, pH, and ferulic acid (FA) on the enzymatic cross-linking of substrate, Cyt C, were determined by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. High-performance size exclusion chromatography, laser particle size analysis and isothermal titration calorimetry (ITC) were also applied to investigate the cross-linking product and enthalpy changes. Structural changes of Cyt C at different pH values were analyzed by ultraviolet–visible (UV–vis), fluorescence, and circular dichroism (CD) measurements.

Results: Complete cross-linking, partial cross-linking, minute cross-linking, and no cross-linking occurred at pH 2.0, 4.0, 6.0, and 8.0, respectively. ITC analysis demonstrated that the enzymatic cross-linking of Cyt C was an endothermic process. The UV–vis, fluorescence, and CD measurements exhibited that the tertiary structure of Cyt C was disrupted, and part of the α-helical polypeptide region unfolded at pH 2.0. The structural flexibilities decreased, and the tertiary structure of Cyt C became increasingly compact with the increase in pH values from 4.0 to 8.0. The gradual changes in the structure of Cyt C at different pH values were in accordance with the cross-linking results of Cyt C catalyzed by laccase.

Conclusions: The results demonstrated that minute structure changes of substrate had a remarkable effect on the laccase-induced cross-linking. The findings promote the understanding of the substrate requirement of laccase in protein cross-linking and are instructive for the modulation of laccase-induced protein cross-linking.




Full Text: | PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology