• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 58 (2022)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Multiple-objective optimization of lactic-fermentation parameters to obtain a functional-beverage candidate | Alvarado-Cóndor | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2022.04.001
Electronic Journal of Biotechnology, Vol 58 (2022)

Multiple-objective optimization of lactic-fermentation parameters to obtain a functional-beverage candidate

Paola M. Alvarado-Cóndor, Jimmy Núñez-Pérez, Rosario C. Espín-Valladares, José M. Pais-Chanfrau



Abstract

Background: Whey is the most abundant by-product of the cheese industry. It is estimated that it contains up to 55% of all nutrients of milk and therefore, it is considered a starting material for obtaining valuable products.

Results: The response surface methodology was used to find the combination of temperature (between 20 and 36°C), and the content of whey powder (37.5–77% (m/m)) to maximize the concentration of kefiran, the concentration of lactic acid bacteria (LAB) and yeast in the supernatant. After validating the quadratic models of each transformed response variable, it underwent a maximization procedure to find the optimal condition obtaining two maximum spaces at the temperature range of 28.5–29.7°C and 43.3% (m/m) of whey-powder content, or 28.0–28.3°C and 71.2% (m/m) of whey-powder content. The validation experiments were carried out for the first suggested optimal solution, through three repetitions under the same optimal conditions, and it was confirmed that there is no significant difference with the values provided by the model.

Conclusions: Physicochemical characteristics (protein, fat, acidity, lactose, viscosity, alcoholic content) under optimal conditions were evaluated and proved its compliance with the Ecuadorian and Andean community regulations. These results suggest that we are in the presence of a functional beverage candidate in which the contents of LAB and yeast (probiotics) and kefiran (prebiotic) were simultaneously maximized.




Full Text: | PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology