• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 55 (2022)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Optimization of culture conditions of screened Galactomyces candidum for the production of single cell protein from biogas slurry | Zhou | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2021.11.006
Electronic Journal of Biotechnology, Vol 55 (2022)

Optimization of culture conditions of screened Galactomyces candidum for the production of single cell protein from biogas slurry

Pan Zhou, Lu Zhang, Hongxia Ding, Xueli Gao, Yichao Chen, Dong Li



Abstract

Background: The use of single cell protein (SCP) has become a method for alleviating the shortage of protein feed that microorganisms propagate in a suitable culture medium. In this study, SCP was produced by yeast to use the nutrition contained in the biogas slurry of chicken manure.

Results: The results showed that Galactomyces candidum was the most efficient at producing SCP among the seven yeasts studied. The maximum cell dry weight (CDW) 6.79 g/L and protein content 39.39%, were obtained under the fermentation conditions of initial NH4+-N concentration of 2000 mg/L and a C/N ratio of 6:1 with acetate as the pH regulator. The total CDW increased to 9.24 g/L after secondary fermentation. Metal elements had a little effect on the growth of G. candidum. The addition of sulfur not only promoted the synthesis of sulfur-containing amino acid cysteine but also increased protein content by promoting the synthesis of glutamic acid and glutamine.

Conclusions: Future experiments should focus more on achieving high-density cultivation and more efficient utilization of ammonia nitrogen in the biogas slurry.




Full Text: | PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology