• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 54 (2021)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Development of a chemically defined medium for Planctopirus limnophila to increase biomass production | Kruppa | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2021.09.002
Electronic Journal of Biotechnology, Vol 54 (2021)

Development of a chemically defined medium for Planctopirus limnophila to increase biomass production

Oscar Claudius Kruppa, Doreen Gerlach, Rong Fan, Peter Czermak



Abstract

Background: Planctomycetes is a phylum of biofilm-forming bacteria with numerous biosynthetic gene clusters, offering a promising source of new bioactive secondary metabolites. However, the current generation of chemically defined media achieves only low biomass yields, hindering research on these species. We therefore developed a chemically defined medium for the model organism Planctopirus limnophila to increase biomass production.

Results: We found that P. limnophila grows best with a 10 mM sodium phosphate buffer. The replacement of complex nitrogen sources with defined amino acid solutions did not inhibit growth. Screening for vitamin requirements revealed that only cyanocobalamin (B12) is needed for growth. We used response surface methodology to optimize the medium, resulting in concentrations of 10 g/L glucose, 34 mL/L Hutner’s basal salts, 23.18 mM KNO3, 2.318 mM NH4Cl and 0.02 mg/L cyanocobalamin. The analysis of amino acid consumption allowed us to develop a customized amino acid solution lacking six of the amino acids present in Aminoplasmal 10%. Fed-batch cultivation in a bioreactor using the optimized medium achieved a final ΔOD600 of 46.8 ± 0.5 after 108 h, corresponding to a cell dry weight of 13.6 ± 0.7 g/L.

Conclusions: The optimized chemically defined medium allowed us to produce larger amounts of biomass more quickly than reported in earlier studies. Further research should focus on triggering P. limnophila biofilm formation to activate the gene clusters responsible for secondary metabolism.




Full Text: | PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2022 by Electronic Journal of Biotechnology