• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 51 (2021)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Systematic engineering of the rate-limiting step of β-alanine biosynthesis in Escherichia coli | Xu | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2021.03.002
Electronic Journal of Biotechnology, Vol 51 (2021)

Systematic engineering of the rate-limiting step of β-alanine biosynthesis in Escherichia coli

Jian Xu, Ying Zhu, Zhemin Zhou



Abstract

Background: Large amounts of β-alanine are required in fine chemical and pharmaceutical synthesis and other fields. Profitable and green methods are required for the industrial production of β-alanine.

Results: Replacing endogenous panD of Escherichia coli with heterologous CgpanD from Corynebacterium glutamicum enabled β-alanine synthesis of 0.67 g/L by strain B0016-082BB. Overexpressing CgpanD on both plasmids and chromosomes to enhance the rate-limiting step improved the β-alanine titer to 4.25 g/L in strain B0016-083BB/pPL451-panD with a slighter metabolic burden. Growth factors were introduced by addition of yeast extract, and 6.65 g/L of β-alanine was synthesized by strain B0016-083BB/pPL451-panD in the M9-3Y medium.

Conclusions: Enhancement of the rate-limiting steps in the β-alanine biosynthetic pathway, recruitment of the temperature-sensitive inducible pL promoter, and optimization of the fermentation process could efficiently increase β-alanine production in E. coli.




Full Text: | PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology