• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 48 (2020)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Prospective production of fructose and single cell protein from date palm waste | Putra | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2020.09.007
Electronic Journal of Biotechnology, Vol 48 (2020)

Prospective production of fructose and single cell protein from date palm waste

Meilana Dharma Putra, Ahmed E. Abasaeed, Saeed M. Al-Zahrani



Abstract

Background: Fructose and single cell protein are important products for the food market. Abundant amounts of low-grade dates worldwide are annually wasted. In this study, highly concentrated fructose syrups and single cell protein were obtained through selective fermentation of date extracts by Saccharomyces cerevisiae.

Results: The effect of air flow (0.1, 0.5, 0.75, 1, 1.25 and 1.5 vvm) and pH (4.5, 4.8, 5, 5.3 and 5.6) was investigated. Higher air flow led to lower fructose yield. The optimum cell mass production of 10 g/L was achieved at air flow of 1.25 vvm with the fructose yield of 91%. Similar cell mass production was obtained in the range pH of 5.0–5.6, while less cell mass was obtained at pH less than 5. Controlling the pH at 4.5, 5.0 and 5.3 failed to improve the production of cell mass which were 5.6, 5.9 and 5.4 g/L respectively; however, better fructose yield was obtained.

Conclusions: Extension of the modified Gompertz enabled excellent predictions of the cell mass, fructose production and fructose fraction. The proposed model was also successfully validated against data from literatures. Thus, the model will be useful for wide application of biological processes.




Full Text: | PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology