• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 29 (2017)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Effects of volatile fatty acids in biohydrogen effluent on biohythane production from palm oil mill effluent under thermophilic condition | Mamimin | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2017.07.006
Electronic Journal of Biotechnology, Vol 29 (2017)

Effects of volatile fatty acids in biohydrogen effluent on biohythane production from palm oil mill effluent under thermophilic condition

Chonticha Mamimin, Poonsuk Prasertsan, Prawit Kongjan, Sompong O-Thong



Abstract

Background: Biohydrogen effluent contains a high concentration of volatile fatty acid (VFA) mainly as butyric, acetic, lactic and propionic acids. The presence of various VFAs (mixture VFAs) and their cooperative effects on two-stage biohythane production need to be further studied. The effect of VFA concentrations in biohydrogen effluent of palm oil mill effluent (POME) on methane yield in methane stage of biohythane production was investigated.

Results: The methane yield obtained in low VFA loading (0.9 and 1.8 g/L) was 15–20% times greater than that of high VFA loading (3.6 and 4.7 g/L). Butyric acid at high concentrations (8 g/L) has the individual significantly negative effect the methane production process (P < 0.05). Lactic, acetic and butyric acid mixed with propionic acid at a concentration higher than 0.5 g/L has an interaction significantly negative effect on the methanogenesis process (P < 0.05). Inhibition condition had a negative effect on both bacteria and archaea with inhibited on Geobacillus sp., Thermoanaerobacterium thermosaccharolyticum, Methanoculleus thermophilus and Methanothermobacter delfuvii resulting in low methane yield.

Conclusion: Preventing the high concentration of butyric acid, and propionic acid in the hydrogenic effluent could enhance methane production in two-stage anaerobic digestion for biohythane production.




Full Text: | PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology