• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 28 (2017)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Combined strategies for improving production of a thermo-alkali stable laccase in Pichia pastoris | Wang | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2017.04.002
Electronic Journal of Biotechnology, Vol 28 (2017)

Combined strategies for improving production of a thermo-alkali stable laccase in Pichia pastoris

Jiayi Wang, Lei Lu, Fujuan Feng



Abstract

Background: Laccases are copper-containing enzymes which have been used as green biocatalysts for many industrial processes. Although bacterial laccases have high stabilities which facilitate their application under harsh conditions, their activities and production yields are usually very low. In this work, we attempt to use a combinatorial strategy, including site-directed mutagenesis, codon and cultivation optimization, for improving the productivity of a thermo-alkali stable bacterial laccase in Pichia pastoris.

Results: A D500G mutant of Bacillus licheniformis LS04 laccase, which was constructed by site-directed mutagenesis, demonstrated 2.1-fold higher activity when expressed in P. pastoris. The D500G variant retained similar catalytic characteristics to the wild-type laccase, and could efficiently decolorize synthetic dyes at alkaline conditions. Various cultivation factors such as medium components, pH and temperature were investigated for their effects on laccase expression. After cultivation optimization, a laccase activity of 347 ± 7 U/L was finally achieved for D500G after 3 days of induction, which was about 9.3 times higher than that of wild-type enzyme. The protein yield under the optimized conditions was about 59 mg/L for D500G.

Conclusions: The productivity of the thermo-alkali stable laccase from B. licheniformis expressed in P. pastoris was significantly improved through the combination of site-directed mutagenesis and optimization of the cultivation process. The mutant enzyme retains good stability under high temperature and alkaline conditions, and is a good candidate for industrial application in dye decolorization.



Full Text: | PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2022 by Electronic Journal of Biotechnology