• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 25 (2017)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Effect of miR-125b on dermal papilla cells of goat secondary hair follicle | Zhou | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2016.11.006
Electronic Journal of Biotechnology, Vol 25 (2017)

Effect of miR-125b on dermal papilla cells of goat secondary hair follicle

Guangxian Zhou, Chao Yuan, Xiaolin He, Danju Kang, Xiaolong Wang, Yulin Chen



Abstract

Background: MicroRNAs (miRNAs) are endogenous noncoding RNAs that regulate various biological processes. miR-125b is a miRNA that has been reported to be critical for hair follicle (HF) morphogenesis and development. We identified that the expression of miR-125b varies during an individual hair cycle (anagen, catagen, and telogen) in the skin of cashmere goats. We constructed a gain model (by overexpressing miR-125b) and a loss model (by inhibiting endogenous miR-125b) based on dermal papilla cells (DPCs) to further investigate the role of miR-125b in HF cycle. In addition, we used a dual-luciferase system to highlight the predicated target genes of miR-125b.

Results: We found that miR-125b affects the expression of FGF5, IGF-1, SHH, TNF-α, MSX2, LEF-1, FGF7, NOGGIN, BMP2, BMP4, TGF-β1, and β-catenin. The dual-luciferase assay further validated a direct interaction between miR-125b and FGF5 and TNF-α.

Conclusion: miR-125b affects the expression levels of genes related to hair cycle and may also play a critical role in regulating the periodic development of HF.




Full Text: | Reprint PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology