• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 25 (2017)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Efficient immobilization of agarase using carboxyl-functionalized magnetic nanoparticles as support | Xiao | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2016.10.007
Electronic Journal of Biotechnology, Vol 25 (2017)

Efficient immobilization of agarase using carboxyl-functionalized magnetic nanoparticles as support

Anfeng Xiao, Qiong Xiao, Yan Lin, Hui Ni, Yanbing Zhu, Huinong Cai



Abstract

Background: A simple and efficient strategy for agarase immobilization was developed with carboxyl-functionalized magnetic nanoparticles (CMNPs) as support. The CMNPs and immobilized agarase (agarase-CMNPs) were characterized by transmission electron microscopy, dynamic light scattering, vibrating sample magnetometry, scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, and zeta-potential analysis. The hydrolyzed products were separated and detected by ESI-TOF-MS.

Results: The agarase-CMNPs exhibited a regular spherical shape with a mean diameter of 12 nm, whereas their average size in the aqueous solution was 43.7 nm as measured by dynamic light scattering. These results indicated that agarase-CMNPs had water swelling properties. Saturation magnetizations were 44 and 29 emu/g for the carriers and agarase-CMNPs, respectively. Thus, the particles had superparamagnetic characteristics, and agarase was successfully immobilized onto the supports. Agaro-oligosaccharides were prepared with agar as substrate using agarase-CMNPs as biocatalyst. The catalytic activity of agarase-CMNPs was unchanged after six reuses. The ESI-TOF mass spectrogram showed that the major products hydrolyzed by agarase-CMNPs after six recycle uses were neoagarotetraose, neoagarohexaose, and neoagarooctaose. Meanwhile, the end-products after 90 min of enzymatic treatment by agarase-CMNPs were neoagarobiose and neoagarotetraose.

Conclusions: The enhanced agarase properties upon immobilization suggested that CMNPs can be effective carriers for agarase immobilization. Agarase-CMNPs can be remarkably used in developing systems for repeated batch production of agar-derived oligosaccharides.



Full Text: | Reprint PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology