• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 21 (2016)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
SSR genetic diversity assessment of popular pigeonpea varieties in Malawi reveals unique fingerprints | Njung'e | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2016.02.004
Electronic Journal of Biotechnology, Vol 21 (2016)

SSR genetic diversity assessment of popular pigeonpea varieties in Malawi reveals unique fingerprints

Vincent Njung'e, Santosh Deshpande, Moses Siambi, Richard Jones, Said Silim, Santie De Villiers



Abstract

Background: Pigeonpea (Cajanus cajan (L.) Millsp.) is a drought tolerant legume of the Fabaceae family and the only cultivated species in the genus Cajanus. It is mainly cultivated in the semi-arid tropics of Asia and Oceania, Africa and America. In Malawi, it is grown as a source of food and income and for soil improvement in intercropping systems. However, varietal contamination due to natural outcrossing causes significant quality reduction and yield losses. In this study, 48 polymorphic SSR markers were used to assess the diversity amongst all pigeonpea varieties cultivated in Malawi to determine if a genetic fingerprint could be identified to distinguish the popular varieties.

Results: A total of 212 alleles were observed with an average of 5.58 alleles per marker and a maximum of 14 alleles produced by CCttc019 (Marker 40). Polymorphic information content (PIC), ranged from 0.03 to 0.89 with an average of 0.30. A neighbor-joining tree produced 4 clusters. The most commonly cultivated varieties, which include released varieties and cultivated land races, were well-spread across all the clusters observed, indicating that they generally represented the genetic diversity available in Malawi, although substantial variation was evident that can still be exploited through further breeding.

Conclusion: Screening of the allelic data associated with the five most popular cultivated varieties, revealed 6 markers - CCB1, CCB7, Ccac035, CCttc003, Ccac026 and CCttc019 - which displayed unique allelic profiles for each of the five varieties. This genetic fingerprint can potentially be applied for seed certification to confirm the genetic purity of seeds that are delivered to Malawi farmers.    



Full Text: | Reprint PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology