• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 17, No 5 (2014)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Impact of simulated acid rain on soil microbial community function in Masson pine seedlings | Wang | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2014.07.008
Electronic Journal of Biotechnology, Vol 17, No 5 (2014)

Impact of simulated acid rain on soil microbial community function in Masson pine seedlings

Lin Wang, Zhan Chen



Abstract

Background: Accompanying its rapid economic development and population growth, China is the world's third largest acid rain region, following Europe and North America. The effects of acid rain on forest ecosystem were widely researched, including the growth, the nutrient of the leaf and soil, and so on. However, there is few reports about the effects of acid rain on the soil microbial diversity. This study investigated the effects of acid rain on soil microbial community function under potted Masson pine seedlings (Pinus massoniana Lamb).

Results: After 7 months of treatment with simulated acid rain, the low acid load treatment (pH 5.5) stimulated soil microbial activity, and increased soil microbial diversity and richness, while the higher levels of acid application (pH 4.5, pH 3.5) resulted in lower soil microbial activity and had no significant effects on soil microbial diversity and richness. Principal component analysis showed that there was clear discrimination in the metabolic capability of the soil microbial community among the simulated acid rain and control treatments.

Conclusion: The results obtained indicated that the higher acid load decreased the soil microbial activity and no effects on soil microbial diversity assessed by Biolog of potted masson pine seedlings. Simulated acid rain also changed the metabolic capability of the soil microbial community.



Full Text: | Reprint PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology