• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 17, No 2 (2014)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Supplementary Files
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Purification and Characterization of an Aspartic Protease from the Rhizopus oryzae Protease Extract, Peptidase R | Hsiao | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2014.02.002
Electronic Journal of Biotechnology, Vol 17, No 2 (2014)

Purification and Characterization of an Aspartic Protease from the Rhizopus oryzae Protease Extract, Peptidase R

Nai-Wan Hsiao, Yeh Chen, Yi-Chia Kuan, Yen-Chung Lee, Shuo-Kang Lee, Hsin-Hua Chan, Chao-Hung Kao



Abstract

Background: Aspartic proteases are a subfamily of endopeptidases that are useful in a variety of applications, especially in the food processing industry. Here we describe a novel aspartic protease that was purified from Peptidase R, a commercial protease preparation derived from Rhizopus oryzae.

Results: An aspartic protease sourced from Peptidase R was purified to homogeneity by anion exchange chromatography followed by polishing with a hydrophobic interaction chromatography column, resulting in a 3.4-fold increase in specific activity (57.5 × 103 U/mg) and 58.8% recovery. The estimated molecular weight of the purified enzyme was 39 kDa. The N-terminal sequence of the purified protein exhibited 63%-75% identity to rhizopuspepsins from various Rhizopus species. The enzyme exhibited maximal activity at 75°C in glycine-HCl buffer, pH 3.4 with casein as the substrate. The protease was stable at 35°C for 60 min and had an observed half-life of approximately 30 min at 45°C. Enzyme activity was not significantly inhibited by chelation with ethylenediamine tetraacetic acid (EDTA), and the addition of metal ions to EDTA-treated protease did not significantly change enzyme activity, indicating that proteolysis is not metal ion-dependent. The purified enzyme was completely inactivated by the aspartic protease inhibitor pepstatin A.

Conclusion: Based on the observed enzyme activity, inhibition profile with pepstatin A, and sequence similarity to other rhizopuspepsins, we have classified this enzyme as an aspartic protease.




Full Text: | Reprint PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology