• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 17, No 2 (2014)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Notify colleague*
  • Email the author*
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.

* Requires registration

Efficiency of RAPD, ISSR, AFLP and ISTR markers for the detection of polymorphisms and genetic relationships in camote de cerro (Dioscorea spp.) | Santacruz-Ruvalcaba | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt.2014.01.002
Electronic Journal of Biotechnology, Vol 17, No 2 (2014)

Efficiency of RAPD, ISSR, AFLP and ISTR markers for the detection of polymorphisms and genetic relationships in camote de cerro (Dioscorea spp.)

Fernando Santacruz-Ruvalcaba, Ana Paulina Velasco-Ramírez, Martha Isabel Torres-Morán, Sandy Molina-Moret, José de Jesús Sánchez-González



Abstract

 

Background: At present, species known as camote de cerro (Dioscorea spp.) are found only in the wilderness in Mexico, but their populations are extremely depleted because they are indiscriminately collected, it is urgent to evaluate the conservation status of these plants in order to design conservation genetics programs. In this study, genetic diversity parameters along with cluster analysis based on Jaccard´s coefficient were estimated with the objective to assess the efficiency of Random Amplified Polymorphic DNA (RAPD), Inter Simple Sequence Repeat (ISSR), Amplified Fragment Length Polymorphism (AFLP) and Inverse Sequence Tagged Repeat (ISTR) molecular DNA markers in the Dioscorea genus.

Results: The polymorphic information contents were quite similar for all markers (≈0.48). Genetic variation of Dioscorea spp., in terms of average heterozygosity was lower with ISTR (0.36), and higher when other markers were used (RAPD = 0.43; ISSR = 0.45 and AFLP = 0.47).

Conclusion: This indicates an important level of genetic differences despite the fact that the plant is asexually propagated. Based on the diversity statistics, any marker tested in present work can be recommended for use in large-scale genetic studies of populations. However, the low correlations among different molecular marker systems show the importance of the complementarity of the information that is generated by different markers for genetic studies involving estimation of polymorphism and relationships.




Full Text: | Reprint PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2021 by Electronic Journal of Biotechnology