• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 9, No 3 (2006)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
An alternative pathway for plant in vitro regeneration of chinaberry -tree Melia azedarach L. derived from the induction of somatic embryogenesis | Sharry | Electronic Journal of Biotechnology
doi: 10.2225/vol9-issue3-fulltext-13
Electronic Journal of Biotechnology, Vol 9, No 3 (2006)

An alternative pathway for plant in vitro regeneration of chinaberry -tree Melia azedarach L. derived from the induction of somatic embryogenesis

Sandra Sharry, José Luis Cabrera Ponce, Luis Herrera Estrella, Rosa María Rangel Cano, Silvia Lede, Walter Abedini



Abstract

A highly efficient somatic embryogenesis system and subsequent plant regeneration of chinaberry (Melia azedarach L.) was developed. Plants were regenerated from indirect somatic embryogenesis induction. Novel features of this improved protocol, include: a) Embryogenic callus induction with no addition of 2, 4-D in the culture media; b) Somatic embryos differentiation was achieved by using high concentration of cytokinins (BAP 10 mg/L) and adenine; c) 100% conversion of somatic embryos to plants was practically obtained and 100% of plants survived under greenhouse conditions; d) Addition of putrescine improved somatic embryos germination. The amount of somatic embryos produced by the pathway of indirect somatic embryogenesis was 447 per gram of fresh weight callus. Regenerated plants were phenotypically normal. The developed protocol established the potential to produce plantlets from cotyledon explants through somatic embryogenesis. It also presents itself as a highly efficient method for mass clonal propagation and conservation of Melia azedarach.




Full Text: | Full Text | Reprint PDF |

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2022 by Electronic Journal of Biotechnology