• Log In
  • New issue alert
  • Submit a manuscript
  • Register
  • Home
  • About
  • Editorial Board
  • Search
  • Archives
  • Current
  • Forthcoming

Share

Article Panel


Vol 46 (2020)
»Table of Contents
Reading Tools
  • About the author
  • How to cite this article
  • Indexing metadata
  • Print version
  • Look up terms
  • Finding References
  • Review policy

Related items
  • Author's work


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 International.
Cometabolic biodegradation of quizalofop-p-ethyl by Methylobacterium populi YC-XJ1 and identification of QPEH1 esterase | Li | Electronic Journal of Biotechnology
doi:10.1016/j.ejbt..2020.05.003
Electronic Journal of Biotechnology, Vol 46 (2020)

Cometabolic biodegradation of quizalofop-p-ethyl by Methylobacterium populi YC-XJ1 and identification of QPEH1 esterase

Xianjun Li, Junhuan Wang, Wei Wu, Yang Jia, Shuanghu Fan, Thet Su Hlaing, Ibatsam Khokhar, Yanchun Yan



Abstract

Background: Quizalofop-p-ethyl (QPE), a unitary R configuration aromatic oxyphenoxypropionic acid ester (AOPP) herbicide, was widely used and had led to detrimental environmental effects. For finding the QPE-degrading bacteria and promoting the biodegradation of QPE, a series of studies were carried out.

 

Results: A QPE-degrading bacterial strain YC-XJ1 was isolated from desert soil and identified as Methylobacterium populi, which could degrade QPE with methanol by cometabolism. Ninety-seven percent of QPE (50 mg/L) could be degraded within 72 h under optimum biodegradation condition of 35°C and pH 8.0. The maximum degradation rate of QPE was 1.4 mg/L/h, and the strain YC-XJ1 exhibited some certain salinity tolerance. Two novel metabolites, 2-hydroxy-6-chloroquinoxaline and quinoxaline, were found by high-performance liquid chromatography/mass spectroscopy analysis. The metabolic pathway of QPE was predicted. The catalytic efficiency of strain YC-XJ1 toward different AOPPs herbicides in descending order was as follows: haloxyfop-p-methyl ≈ diclofop-methyl ≈ fluazifop-p-butyl > clodinafop-propargyl > cyhalofop-butyl > quizalofop-p-ethyl > fenoxaprop-p-ethyl > propaquizafop > quizalofop-p-tefuryl. The genome of strain YC-XJ1 was sequenced using a combination of PacBio RS II and Illumina platforms. According to the annotation result, one α/β hydrolase gene was selected and named qpeh1, for which QPE-degrading function has obtained validation. Based on the phylogenetic analysis and multiple sequence alignment with other QPE-degrading esterases reported previously, the QPEH1 was clustered with esterase family V.

 

Conclusion: M. populi YC-XJ1 could degrade QPE with a novel pathway, and the qpeh1 gene was identified as one of QPE-degrading esterase gene.




Full Text: | PDF | HTML

ISSN:  0717-3458

Contact: edbiotec@pucv.cl

Pontificia Universidad Católica de Valparaíso
Av. Brasil 2950, Valparaíso, Chile
Copyright © 1997- 2023 by Electronic Journal of Biotechnology