Abstract
Enterobacter sp. NRG4 was shown to excrete chitinase into the culture supernatant when cultivated in medium containing chitin. A 60 kDa extracellular chitinase was purified to homogeneity and characterized. The enzyme hydrolyzed swollen chitin, colloidal chitin, regenerated chitin and glycol chitin but did not hydrolyze chitosan. The chitinase exhibited Km and Vmax values of 1.43 mg ml-1 and 83.33 µM µg-1 h-1 for swollen chitin, 1.41 mg ml-1 and 74.07 µM µg-1 h-1 for colloidal chitin, 1.8 mg ml-1 and 40 µM µg-1 h-1 for regenerated chitin and 2.0 mg ml-1 and 33.33 µM µg-1 h-1 for glycol chitin, respectively. The optimal temperature and pH for activity were 45ºC and pH 5.5, respectively. Mg2+, K+ and Ca2+ stimulated chitinase activity by 13, 16 and 18%, respectively whereas Cu2+, Co2+, Ag+ and Hg2+ inhibited chitinase activity by 9.7, 15, 22 and 72.2%, respectively at 1 mM concentration. N-bromosuccinamide (NBS) at 1 mM and iodoacetamide at 10 mM concentration completely inhibited the enzyme activity. Dithiobisnitrobenzoic acid (DTNB) at 10 mM concentration inhibited chitinase activity by 97.2%. Chitin was hydrolyzed to chitobiose and N-acetyl D-glucosamine when incubated with the purified enzyme. The hydrolysis pattern of the purified enzyme indicated that the chitinase was an endochitinase.
Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".
The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.