Optimisation of the solids suspension conditions in a continuous stirred tank reactor for the biooxidation of refractory gold concentrates
Full Text
Reprint PDF

Keywords

Process Biotechnology

How to Cite

1.
González R, Gentina JC, Acevedo F. Optimisation of the solids suspension conditions in a continuous stirred tank reactor for the biooxidation of refractory gold concentrates. Electron. J. Biotechnol. [Internet]. 2003 Dec. 15 [cited 2024 Nov. 24];6(3):0-. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v6n3-10

Abstract

The large-scale biooxidation of gold concentrates is usually carried on in continuous stirred tank reactors (CSTR). Attaining homogeneous slurries is a difficult task, as solids tend to stratify in the tank. The objective of this work was to determine the optimal conditions of agitation in a CSTR so to obtain the best solids suspension. The experiments were performed in a 5 litre glass tank operated with 3 litres of 6% w/v slurry. The impellers (pitched blade turbine or marine propeller) were placed at heights of 6.7 to 13.4 cm from the bottom and operated at 370 to 1040 rpm, with specific aeration rates of 0.3 to 3.7 vvm. A statistical experimental design was used which allowed the derivation of a model representing response surfaces of the exit and mean solids concentration as a function of the impeller type, impeller distance from the bottom and aeration and agitation rates. During the experiments no solids were deposited on the bottom and the solids concentration near the bottom was always higher than that of the top region. At the optimal conditions for each type of impeller, the marine propeller required agitation rates about 15 to 22% higher than the pitched blade turbine. Nevertheless it is concluded that the marine helix is preferable because it requires less power and produces a more homogeneous suspension.

Full Text
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.