Engineering bacterial strains through the chromosomal insertion of the chlorocatechol catabolism tfdICDEF gene cluster, to improve degradation of typical bleached Kraft pulp mill effluent pollutants
Full Text
Reprint PDF

Keywords

chloroaromatics
chlorocatechols
metabolic complementation
Ralstonia eutropha
ortho ring cleavage
tfd genes

How to Cite

1.
Bobadilla R, Varela C, Céspedes R, González B. Engineering bacterial strains through the chromosomal insertion of the chlorocatechol catabolism tfdICDEF gene cluster, to improve degradation of typical bleached Kraft pulp mill effluent pollutants. Electron. J. Biotechnol. [Internet]. 2002 Aug. 15 [cited 2024 Nov. 22];5(2):0-. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v5n2-7

Abstract

Chloroaromatic pollutants from bleached Kraft pulp mill effluents (BKME) are difficult to degrade, because bacterial strains present in BKME aerobic treatments, only partially degrade these compounds, accumulating the corresponding chlorocatechol intermediates. To improve the catabolic performance of chlorocatechol-accumulating strains, we introduced, by chromosomal insertion, the tfdICDEF gene cluster from Ralstonia eutropha JMP134 (pJP4). This gene cluster allows dechlorination and channelling of chlorocatechols into the intermediate metabolism. Two bacterial strains, R. eutropha JMP222 and Pseudomonas putida KT2442, able to produce chlorocatechols from 3-chlorobenzoate (3-CB) were used. Acinetobacter lwoffii RB2 isolated from BKME by its ability to grow on guaiacol as sole carbon source and shown to be able to produce the corresponding chlorocatechols from the BKME pollutants 4-, and 5-chloroguaiacol, was also used. The tfdICDEF gene cluster was inserted in the chromosome of these strains using miniTn5-derived vectors that allow expression of the Tfd enzymes driven by the lacIq/Ptrc or tfdR/Ptfd-I regulatory systems, and therefore, responding to the inducers isopropyl-ß-D-thiogalactopyranoside (IPTG) or 3-CB, respectively. Crude extracts of cells from strains JMP222, KT2442 or RB2 engineered with the tfd genes, grown on benzoate and induced with IPTG or 3-CB showed Tfd specific activities of about 15% - 80% of that of the strain JMP134. Dechlorination rates for 3-CB or chloroguaiacols correlated with levels of Tfd enzymes. However, none of the strains containing the chromosomal copy of the tfdICDEF cluster grew on monochloroaromatics as sole carbon source. Experiments with BKME aerobic treatment microcosms showed that the catabolic performance of the engineered bacteria was also lower than the wild-type R. eutropha strain JMP134.

Full Text
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.