Feasible biotechnological and bioremediation strategies for serpentine soils and mine spoils
Full Text
Reprint PDF

Keywords

Metalliferous soils
Rhizosphere
Mycorrhizae
Genetic engineering
Metal sequesteration
Metal hyperaccumulators
Metal tolerant plants

How to Cite

1.
Vara Prasad MN, de Oliveira Freitas HM. Feasible biotechnological and bioremediation strategies for serpentine soils and mine spoils. Electron. J. Biotechnol. [Internet]. 1999 Apr. 15 [cited 2024 Dec. 20];2(1):0-. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v2n1-5

Abstract

Reclamation of metalliferous areas is a priority field of biogeochemistry of trace elements. Ultramafic outcrops rich in heavy metals have been mapped in different parts of the world. Heavy metals are potentially cytotoxic, caricinogenic and mutagenic. Environment protection agencies and legislations insisting the mine operators to restore the mine spoils and tailings since the metal leachates have serious implications in production of healthy agricultural products. Hence, restoration of mine spoils, tailings and metalliferous soils is a challenging task for the well being of Humans. Synthetic and natural zeolites have been used as chelators for rapid mobility and uptake of metals from contaminated soils by plants. Use of synthetic chelators significantly increased Pb and Cd uptake and translocation from roots to shoots facilitating phytoextraction of the metals from low grade ores. Contrastingly, synthetic cross linked polyacrylates, hydrogels have protected plant roots from heavy metals toxicity and prevented the entry of metals into roots. However, application of these synthetics on large scale may not be a practical solution due to exorbitant costs. Therefore, introduction of metal tolerant wild plants to metalliferous soils, genetic engineering of plants for enhanced synthesis and exudation of natural chelators into the rhizosphere, improvement of the rhizosphere with the help of mycorrhiza and integrated management of the metalliferous ecosystem following the principles of phytoremediation are discussed in this paper.

Full Text
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.