Abstract
A neural network (NN) was trained on amino and nucleic acid sequences to test the NN's ability to predict a nucleic acid sequence given only an amino acid sequence. A multi-layer backpropagation network of one hidden layer with 5 to 9 neurons was used. Different network configurations were used with varying numbers of input neurons to represent amino acids, while a constant representation was used for the output layer representing nucleic acids. In the best-trained network, 93% of the overall bases, 85% of the degenerate bases, and 100% of the fixed bases were correctly predicted from randomly selected test sequences. The training set was composed of 60 human sequences in a window of 10 to 25 codons at the coding sequence start site. Different NN configurations involving the encoding of amino acids under increasing window sizes were evaluated to predict the behavior of the NN with a significantly larger training set. This genetic data analysis effort will assist in understanding human gene structure. Benefits include computational tools that could predict more reliably the backtranslation of amino acid sequences useful for Degenerate PCR cloning, and may assist the identification of human gene coding sequences (CDS) from open reading frames in DNA databases.
Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".
The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.