Abstract
Background: Discovering biomarkers is a fundamental step to understand and deal with genetic diseases. Methods using classic Computer Science algorithms have been adapted in order to support processing large biological data sets, aiming to find useful information to understand causing conditions of diseases such as cancer.
Results: This paper describes some promising biomarker discovery methods based on several grid architectures. Each technique has some features that make it more suitable for a particular grid architecture. This matching depends on the parallelizing capabilities of the method and the resource availability in each processing/storage node.
Conclusion: The study described in this paper analyzed the performance of biomarker discovery methods in different grid architectures. We find that some methods are more suited for certain grid architectures, resulting in significant performance improvement and producing more accurate results.
Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".
The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.