Abstract
Background: Cellulases and lipases have broad industrial application, which calls for an urgent exploration of microorganisms from extreme environments as valuable source of commercial enzyme. In this context, the present work describes the bioprospection and identification of deep-sea bacteria that produce cellulases and lipases, as well their optimal temperature of activity.
Results: The first step of this study was the screening of cellulolytic and lipolytic deep-sea bacteria from sediment and water column, which was conducted with substrates linked with 4-Methylumbelliferyl. Among the 161 strains evaluated, 40 were cellulolytic, 23 were lipolytic and 5 exhibited both activities. Cellulolytic and lipolytic bacteria are more common in sediment than at the water column. Based on the ability to produce cellulases and lipases three isolates were selected and identified (16S rRNA sequencing) as Bacillus stratosphericus, B. aerophilus and B. pumilus. Lipases of strain B. aerophilus LAMA 582 exhibited activity at a wide temperature range (4º to 37ºC) and include psychrophilic behaviour. Strain Bacillus stratosphericus LAMA 585 can growth in a rich (Luria Bertani) and minimal (Marine Minimal) medium, and does not need an inducer to produce its mesophilic cellulases and lipases.
Conclusions: Deep-sea sediments have great potential for bioprospection of cellulase and lipase-producing bacteria. The strains LAMA 582 and LAMA 585 with their special features, exhibit a great potential to application at many biotechnology process.
Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".
The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.