Construction of recombinant Bacillus subtilis strains for efficient pimelic acid synthesis
Full Text
Reprint PDF

Keywords

Bacillus subtilis
biosynthesis
integration
Pglv promoter
pimelic acid
single crossover event

How to Cite

1.
Zhang W-W, Yang M-M, Li H- xin, Wang D. Construction of recombinant Bacillus subtilis strains for efficient pimelic acid synthesis. Electron. J. Biotechnol. [Internet]. 2011 Oct. 14 [cited 2024 Dec. 26];14(6). Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v14n6-1

Abstract

As a precursor, pimelic acid plays an important role in biotin biosynthesis pathway of Bacillus subtilis. Fermentations supplemented with pimelic acid could improve the production of biotin, however, with a disadvantage-high cost. So it is necessary to improve the biosynthesis of pimelic acid via genetic engineering in B. subtilis. In this study, we constructed a recombinant B. subtilis strain for improving the synthesis of pimelic acid, in which a maltose-inducible Pglv promoter was inserted into the upstream of the cistron bioI-orf2-orf3 and, meanwhile, flanked by the tandem cistrons via a single crossover event. The copy number of the integrant was amplified by high-concentration resistance screen and increased to 4-5 copies. The production of pimelic acid from multiple copies integrant was about 4 times higher than that from single copy (1017.13 μg/ml VS. 198.89 μg/ml). And when induced by maltose the production of pimelic acid was about 2 times of that under non-induction conditions (2360.73 μg/ml VS. 991.59 μg/ml). Thus, these results demonstrated that the production of pimelic acid was improved obviously through reconstructed B. subtilis. It also suggested that our expression system provided a convenient source of pimelic acid that would potentially lower the cost of production of biotin from engineered B. subtilis.

Full Text
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.