High density process to cultivate Lactobacillus plantarum biomass using wheat stillage and sugar beet molasses
Full Text
Reprint PDF

Keywords

distillery wastewater
high density fermentation
lactic acid bacteria
Lactobacillus plantarum
sugar beet molasses
wheat stillage

How to Cite

1.
Krzywonos M, Eberhard T. High density process to cultivate Lactobacillus plantarum biomass using wheat stillage and sugar beet molasses. Electron. J. Biotechnol. [Internet]. 2011 Mar. 15 [cited 2024 Dec. 22];14(2). Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v14n2-10

Abstract

Background: Owing to the growing interest in biofuels, the concept of a biorefinery where biomass is converted to a variety of useful products is gaining ground. We here present how distillery waste is combined with a by-product from a sugar production, molasses, to form a medium for the growth of Lactobacillus plantarum with yields and biomass densities comparable with conventional industrial media. Such approach enables a cost-effective utilization of the problematic wastewater from ethanol and a by-product from sugar production. It is the first approach that attempts to find low-cost media for the production of Lactobacillus plantarum biomass.

Results: This study suggests that sieved wheat stillage enriched by adding 1.77 g/l yeast extract and 10% molasses (v/v), with NH4OH used for pH adjustment, may be used as a media for large-scale cultivation of L. plantarum. Such composition of the medium permits a high density of lactic acid bacteria (1.6 x 1010 cfu/ml) to be achieved.

Conclusions: The use of a fermentation medium consisting of distillery wastewater and molasses to obtain value-added products (such as LAB biomass and lactic acid) is a possible step for classical ethanol production to move towards a biorefinery model production in which all by and waste products are utilized to increase produced values and reduce waste production. This enables a cost-effective utilization of the problematic wastewater from ethanol and sugar production.

Full Text
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.