Diversity of marine gliding bacteria in Thailand and their cytotoxicity
Full Text
Reprint PDF

Keywords

Aureispira marina
Aureispira maritime
Fulvivirga kasyanovii
human cell lines
Rapidithrix thailandica
Tenacibaculum mesophilum

How to Cite

1.
Sangnoi Y, Srisukchayakul P, Arunpairojana V, Kanjana-Opas A. Diversity of marine gliding bacteria in Thailand and their cytotoxicity. Electron. J. Biotechnol. [Internet]. 2009 Jul. 15 [cited 2024 Nov. 21];12(3):0-. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v12n3-13

Abstract

Eighty-four marine gliding bacteria were isolated from specimens collected in the Gulf of Thailand and the Andaman Sea. All exhibited gliding motility and swarm colonies on cultivation plates and they were purified by subculturing and micromanipulator techniques. Their 16S rRNA genes were amplified by the polymerase chain reaction (PCR) technique. The phylogenetic analysis indicated that the represented isolates can be separated into six different clads (gr 1 - gr 6) within the Cytophaga-Flavobacterium-Bacteriodes (CFB) group. Group 1 formed a remote linear, with only 90% sequence similarity, from Flavobacteriaceae bacterium which indicated a potentially novel taxonomic group. Groups 2 and 3 were identified as the recently proposed Tenacibaculum mesophilum and Fulvivirga kasyanovii respectively. Groups 4, 5 and 6, consisting of the largest number of the members, were identified as Rapidithrix thailandica, Aureispira marina and Aureispira maritima respectively. The isolates were cultivated in four different cultivation media (Vy/2, RL 1, CY and SK) and the crude extracts were submitted to screen cytotoxicity using a sulphorodamine B (SRB) assay. The results from cytotoxic screening showed that groups 2, 4 and 6 were capable of producing the cytotoxic metabolites against selected human cell lines (breast adenocarcinoma (MCF-7), colon cancer (HT-29), cervical cancer (HeLa) and oral cancer (KB)). However, groups 1, 3 and 5 did not produce metabolites with cytotoxicity when cultivated in the same cultivation media as the previous groups. CY medium was the only cultivation medium which could yield the cytotoxic metabolites against MCF-7.

Full Text
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.