Influence of metal ions and organic carbons on denitrification activity of the halotolerant bacterium, Paracoccus pantotrophus P16 a strain from shrimp pond
Full Text
Reprint PDF

Keywords

metal ions
nitrate reductase
nitrite accumulation
nitrite reductase
Paracoccus pantotrophus

How to Cite

1.
Pintathong P, Richardson DJ, Spiro S, Choorit W. Influence of metal ions and organic carbons on denitrification activity of the halotolerant bacterium, Paracoccus pantotrophus P16 a strain from shrimp pond. Electron. J. Biotechnol. [Internet]. 2009 Apr. 15 [cited 2024 Nov. 21];12(2):0-. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v12n2-12

Abstract

The effect of metal ions, ferric ion (Fe3+) and molybdenum ion (Mo6+) on the denitrification process of Paracoccus pantotrophus P16 grown under saline conditions was investigated. Results revealed that the dosages of added Fe3+ and Mo6+ significantly accelerated nitrate utilization and nitrite accumulation. Enzymatic studies revealed that the membrane-bound nitrate reductase and the periplasmic nitrite reductase had activities of 998 ± 28 and 373 ± 18 nmol (mg protein)-1 min-1, respectively after growing Paracoccus pantotrophus P16 in medium supplemented with 1.5 µM Fe3+. If provided with 1.5 µM Fe3+and 2.4 µM Mo6+, the membrane-bound nitrate reductase activity increased to 6,223 ± 502 nmol (mg protein)-1 min-1 and the periplasmic nitrite reductase was 344 ± 20 nmol (mg protein)-1 min-1. The results indicated that an addition of Fe3+ and Mo6+ led to an overstimulation of nitrate reductase activity as compared with nitrite reductase activity. When glucose was supplied, the minimal ratio of carbon per nitrate (C/N) was 2.31 mg C/mg NO3--N with denitrification yield of 0.45 g NO3--N/g C. Addition of ethanol instead of glucose, the minimal ratio of C/N was 1.15 mg C/mg NO3--N with denitrification yield of 1.08 g NO3--N/g C.

Full Text
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.