Characterization of the nuclear ribosomal DNA unit in Oxalis tuberosa (Oxalidacea) and related species
Full Text
Reprint PDF

Keywords

Andean crops
oca
Oxalis
rDNA
RFLPs

How to Cite

1.
Tosto D, Hopp HE. Characterization of the nuclear ribosomal DNA unit in Oxalis tuberosa (Oxalidacea) and related species. Electron. J. Biotechnol. [Internet]. 2008 Jun. 15 [cited 2024 Nov. 21];11(3):0-. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v11n3-1

Abstract

Oxalis tuberosa is an octoploid Andean tuber crop called "oca" that belongs to the worldwide distributed genus Oxalis. The genus is very heterogeneous and its systematics is still problematic. It has been proposed that O. tuberosa evolved by polyploidization of a still not defined ancestor that belongs to an alliance of species sharing the same basic chromosome number (x = 8). Nuclear rDNA units of O. tuberosa and a selected group of four related diploid species were characterised by RFLP using different restriction endonucleases and southern hybridization probes to produce a restriction map for EcoRI and BamHI. The major rDNA unit length in O. tuberosa was estimated at 10.7 kbp. As expected, restriction site variation was observed mainly in the intergenic spacer (IGS), but was also detected in coding regions. Restriction site mapping organization of the transcribed rDNA unit of O. tuberosa is very similar to O. oblongiformis. Nucleotide sequencing of a region of O. peduncularis IGS generated a complex organization pattern of repeats and subrepeats. Diploid species O. peduncularis, O. tabaconasensis and O. aff. villosula exhibited a ladder pattern that is a consequence of a 170 bp subrepeat unit indicating that these species share organization similarity and sequence homology. The variation pattern provided information to compare among diploid species, although it did not help to clarify taxonomic relationships between O. tuberosa and the putative diploid ancestors analysed in this study. Nonetheless, the RFLP pattern exhibited by O. tuberosa for the IGS region was quite unique and will be a useful tool to prospect in other related species.

Full Text
Reprint PDF

Upon acceptance of an article by the journal, authors will be asked to transfer the copyright to Electronic Journal of Biotechnology, which is committed to maintain the electronic access to the journal and to administer a policy of fair control and ensure the widest possible dissemination of the information. The author can use the article for academic purposes, stating clearly the following: "Published in Electronic Journal of Biotechnology at DOI:10.2225/volXX-issueX-fulltext-XX".

The Copyright Transfer Agreement must be submitted as a signed scanned copy to biotec@ucv.cl. All authors must send a copy of this document.