Bacillus mojavensis isolated from aguamiel and its potential as a probiotic bacterium

Graphical abstract

Bacillus mojavensis isolated from aguamiel and its potential as a probiotic bacterium
PDF
HTML

Keywords

Agave salmiana
Aguamiel
Applied biotechnology
Bacillus mojavensis
Fermented beverages
Food applications
Gastric simulation
Pharmacological
Probiotic potential
Pulque
Tolerance test

How to Cite

1.
Martínez-Ortiz VM, Trujillo-López MA, El-Kassis EG, Bautista-Rodríguez E, Reinhart Kirchmayr MRK, Hernández-Carranza PH-C, Pérez-Armendáriz B. Bacillus mojavensis isolated from aguamiel and its potential as a probiotic bacterium. Electron. J. Biotechnol. [Internet]. 2024 Apr. 17 [cited 2024 Oct. 6];67:42-9. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/2023.11.002

Abstract

Background: Millenary fermented beverages are a source of industrially important microorganisms. Aguamiel and pulque are traditional Mexican beverages of pre-Hispanic origin, with a microbial diversity that contributes to the different fermentations (lactic, alcoholic and acetic). The aim of this research was to characterize the Bacillus mojavensis (BF2A1) strain isolated from aguamiel and determine its probiotic potential. The strain was identified through Mass Spectrometry (MS), molecular techniques, as well as morphological and biochemical profiling. The probiotic activity of the BF2A1 strain and its response during the gastric simulation was determined.

Results: The strain BF2A1 is a Gram-positive, spore-forming bacillus, positive for catalase, gamma-hemolysis, citrate, ornithine, grows at 7.5% NaCl, and acetoin, but negative for motility, indole, and methyl red. Its taxonomic identity was determined as B. mojavensis both by MALDI-TOF MS and sequencing of 16S rDNA. Its probiotic potential was demonstrated as BF2A1 was tolerant to pH 2 (OD620nm 0.289 ± 0.012), 0.3% bile salts (OD620nm 0.103 ± 0.089), 8% NaCl (OD620nm 0.254 ± 0.096), and 1% lysozyme (OD620nm 1.342 ± 0.078) compared to the probiotic strain Lactobacillus leichmannii ATCC 7830TM (Laclei). The antagonistic effect of BF2A1 against Escherichia coli (ATCC25922), Staphylococcus aureus (ATCC25923), and Candida albicans (ATCC60193) showed 25.5%, 8% and, 65% inhibitory growing effect, respectively. BF2A1 in the gastric simulation showed only a reduction of 1–2 log CFU/mL and showed after the intestinal phase a survival rate of 84.4% as compared to the control strains.

Conclusions: This study shows that BF2A1 isolated from aguamiel is a bacterium with probiotic properties that can be used in different areas of Biotechnology.

https://doi.org/10.1016/j.ejbt.2023.11.002
PDF
HTML

References

Escalante A, López Soto DR, Velázquez Gutiérrez JE, et al. Pulque, a traditional Mexican alcoholic fermented beverage: Historical, microbiological, and technical aspects. Front. Microbiol. 2016;7:1026. https://doi.org/10.3389/fmicb.2016.01026 PMid: 27446061

Ortiz-Basurto RI, Pourcelly G, Doco T, et al. Analysis of the main components of the aguamiel produced by the maguey-pulquero (Agave mapisaga) throughout the harvest period. Journal of Agricultural and Food Chemistry 2008;56(10):3682-3687. https://doi.org/10.1021/jf072767h PMid: 18433106

Escalante A, Giles-Gómez M, Hernández G, et al. Analysis of bacterial community during the fermentation of pulque, a traditional Mexican alcoholic beverage, using a polyphasic approach. International Journal of Food Microbiology 2008;124(2):126-134. https://doi.org/10.1016/j.ijfoodmicro.2008.03.003 PMid: 18450312

Tawfick MM, Xie H, Zhao C, et al. Inulin fructans in diet: Role in gut homeostasis, immunity, health outcomes and potential therapeutics. Int J Biol Macromol. 2022;208:948-961. https://doi.org/10.1016/j.ijbiomac.2022.03.218 PMid: 35381290

Valadez-Blanco R, Bravo-Villa G, Santos-Sánchez NF, et al. The artisanal production of pulque, a traditional beverage of the Mexican highlands. Probiotics and Antimicrobial Proteins 2012;4(2):140-144. https://doi.org/10.1007/s12602-012-9096-9 PMid: 26781856

Elshaghabee FMF, Rokana N, Gulhane RD, et al. Bacillus as potential probiotics: status, concerns, and future perspectives. Frontiers in Microbiology 2017;8:1490. https://doi.org/10.3389/fmicb.2017.01490 PMid: 28848511

Castro-Rodríguez D, Hernández-Sánchez H, Yáñez-Fernández J. Probiotic properties of Leuconostoc mesenteroides isolated from aguamiel of Agave salmiana. Probiotics Antimicrob Proteins 2015;7(2):107-117. https://doi.org/10.1007/s12602-015-9187-5 PMid: 25690572

Patel S, Gupta R. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int. J. Syst. Evol. Microbiol. 2020;70(1):406-438. https://doi.org/10.1099/ijsem.0.003775 PMid: 31617837

Harirchi S, Sar, T, Ramezani M, et al. Bacillales: From taxonomy to biotechnological and industrial perspectives. Microorganisms 2022;10(12):2355. https://doi.org/10.3390/microorganisms10122355 PMid: 36557608

Lubkowska B, Je?ewska-Fr?ckowiak J, Sroczy?ski M, et al. Analysis of industrial Bacillus species as potential probiotics for dietary supplements. Microorganisms 2023;11 (2):488. https://doi.org/10.3390/microorganisms11020488 PMid: 36838453

Romero-Luna HE, Hernández-Sánchez H, Dávila-Ortiz G. Traditional fermented beverages from Mexico as a potential probiotic source. Annals of Microbiology 2017:67(9):577-586. https://doi.org/10.1007/s13213-017-1290-2

Jezewska-Frackowiak J, Seroczynska K, Banaszczyk J, et al. The promises and risks of probiotic Bacillus species. Acta Biochimica Polonica 2018;65(4):509-519. https://doi.org/10.18388/abp.2018_2652 PMid: 30521647

Cassani L, Gomez-Zavaglia A, Simal-Gandara J. Technological strategies ensuring the safe arrival of beneficial microorganisms to the gut: From food processing and storage to their passage through the gastrointestinal tract. Food Research International 2020;129:108852. https://doi.org/10.1016/j.foodres.2019.108852 PMid: 32036930

Gatson JW, Benz BF, Chandrasekaran C, et al. Bacillus tequilensis sp. nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis. International Journal of Systematic and Evolutionary Microbiology 2006;56(7):1475-1484. https://doi.org/10.1099/ijs.0.63946-0 PMid: 16825615

Escalante A, Wacher C, Farrés A. Lactic acid bacterial diversity in the traditional Mexican fermented dough pozol as determined by 16SrDNA sequence analysis. Int J Food Microbiol. 2001;64(1-2):21-31. https://doi.org/10.1016/S0168-1605(00)00428-1 PMid: 11252506

Moran S, Robertson K, Paradisi F, et al. Production of lipopeptides in Bacillus sp. CS93 isolated from Pozol. FEMS Microbiology Letters 2010;304(1):69-73. https://doi.org/10.1111/j.1574-6968.2009.01882.x PMid: 20070370

?ubkowska B, Je?ewska-Fr?ckowiak J, Sroczy?ski M, et al. Analysis of industrial Bacillus species as potential probiotics for dietary supplements. Microorganisms 2023;11(2):488. https://doi.org/10.3390/microorganisms11020488 PMid: 36838453.

Cutting SM. Bacillus probiotics. Food Microbiology 2011;28(2):214-220. https://doi.org/10.1016/j.fm.2010.03.007 PMid: 21315976

Jezewska-Frackowiak J, Seroczynska K, Banaszczyk J, et al. Detection of endospore producing Bacillus species from commercial probiotics and their preliminary microbiological characterization. Journal of Environmental Biology 2017;38:1435-1440. https://doi.org/10.22438/jeb/38/6/MRN-478

MacFaddin J. Pruebas bioquímicas para la identificación de bacterias de importancia clínica. 3ra Edición, Editorial Medica Panamericana, Marbella, MA, España. 2003. P. 54-421.

Castillo PL, Betancur CA, Pardo E. Caracterización de microorganismos con potencial probiótico aislados de estiércol de terneros Brahman en Sucre, Colombia. Revista de Investigaciones Veterinarias del Perú 2018;29(2):438-448. https://doi.org/10.15381/rivep.v29i2.14482

Gomez Zavaglia A, Kociubinski G, Pérez P, et al. Isolation and characterization of Bifidobacterium strains for probiotic formulation. Journal of Food Protection 1998;61(7):865-873. https://doi.org/10.4315/0362-028X-61.7.865 PMid: 9678171

Ortakci F, Sert S. Stability of free and encapsulated Lactobacillus acidophilus ATCC 4356 in yogurt and in an artificial human gastric digestion system. Journal of Dairy Science 2012;95(12):6918-6925. https://doi.org/10.3168/jds.2012-5710 PMid: 23021757

Gayoso L, Roxo M, Cavero RY, et al. Bioaccessibility and biological activity of Melissa officinalis, Lavandula latifolia and Origanum vulgare extracts: Influence of an in vitro gastrointestinal digestion. Journal of Functional Foods 2018;44:146-154. https://doi.org/10.1016/j.jff.2018.03.003

Roberts MS, Nakamura LK, Cohan FM. Bacillus mojavensis sp. nov., Distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and differences in fatty acid composition. International Journal of Systematic Bacteriology and Evolutionary Microbiology 1994;44(2):256-264. https://doi.org/10.1099/00207713-44-2-256 PMid: 8186089

Choi SM, Park MH, Jung TS, et al. Characterization of Bacillus mojavensis KJS-3 for industrial Applications. Arch. Pharm. Res. 2011;34:289-298. https://doi.org/10.1007/s12272-011-0215-z PMid: 21380813

Li H, Guan Y, Dong Y, et al. Isolation and evaluation of endophytic Bacillus tequilensis GYLH001 with potential application for biological control of Magnaporthe oryzae. PLOS ONE 2018;13(10):e0203505. https://doi.org/10.1371/journal.pone.0203505

Schleifer, KH. Phylum XIII. Firmicutes Gibbons and Murray 1978, 5 (Firmacutes [sic] Gibbons and Murray 1978, 5). In: De Vos P. et al. Bergey’s Manual® of Systematic Bacteriology. Springer, New York, NY. 2009. https://doi.org/10.1007/978-0-387-68489-5_3

Caulier S, Nannan C, Gillis A, et al. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front. Microbiol 2019;10:302. https://doi.org/10.3389/fmicb.2019.00302 PMid: 30873135

Youcef-Ali M, Kacem Chaouche N, Dehimat L, et al. Antifungal activity and bioactive compounds produced by Bacillus mojavensis and Bacillus subtilis. African Journal of Microbiology Research 2014;8(6):476-484. https://doi.org/10.5897/AJMR2013.6327

Fanaei M, Emtiazi G. Microbial assisted (Bacillus mojavensis) production of bio-surfactant lipopeptide with potential pharmaceutical applications and its characterization by MALDI-TOF-MS analysis. Journal of Molecular Liquids 2018;268:707-714. https://doi.org/10.1016/j.molliq.2018.07.103

Fanaei M, Jurcic K, Emtiazi G. Detection of simultaneous production of kurstakin, fengycin and surfactin lipopeptides in Bacillus mojavensis using a novel gel-based method and MALDI-TOF spectrometry. World J Microbiol Biotechnol 2021;37:97. https://doi.org/10.1007/s11274-021-03064-9 PMid: 33969441

Delcenserie V, Martel D, Lamoureux M, et al. Immunomodulatory effects of probiotics in the intestinal tract. Curr. Issues Mol. Biol. 2008;10:37-54. https://doi.org/10.21775/cimb.010.037

Peredo-Lovillo A, Romero-Luna HE, Jiménez-Fernández M. Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism. Food Res Int. 2020;136:109473. https://doi.org/10.1016/j.foodres.2020.109473 PMid: 32846558

Kim KM, Jung TS, Ok S, et al. Evaluation of genotoxicity of Bacillus mojavensis KJS-3 on culture supernatant for use as a probiotic. Molecular & Cellular Toxicology 2012;8(1):77-81. https://doi.org/10.1007/s13273-012-0010-z

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Electronic Journal of Biotechnology