Abstract
Background: This research probed the relevant mechanism of miR-379-3p by regulating suppressor of cytokine signaling1 (SOCS1) in the processes of inflammation, oxidative stress, and angiogenesis in fat grafting. An increasing body of research indicates the involvement of miRNA/mRNA pathways in the process of fat transplantation, yet the underlying molecular mechanisms remain to be fully elucidated.
Results: miR-379-3p knockdown improved the survival rate of adipocytes, promoted adipose tissue angiogenesis, and reduced inflammation and oxidative stress levels. miR-379-3p targeted SOCS1. SOCS1 upregulation improved adipose tissue survival and angiogenesis and reduced inflammation. miR-379-3p affected adipose tissue survival, angiogenesis, and inflammation by targeting SOCS1 expression.
Conclusions: miR-379-3p inhibits fat grafting survival and angiogenesis by targeting SOCS1 to mediate adipose inflammation, suffering a novel way to improve fat grafting technique development.
References
Hanson SE. The future of fat grafting. Aesthet Surg J 2021;41(Suppl 1):S69-S74. https://doi.org/10.1093/asj/sjab130 PMid: 34002767
Dayal A, Bhatia A, Hsu JT. Fat grafting in aesthetics. Clin Dermatol 2022;40(1):35-44. https://doi.org/10.1016/j.clindermatol.2021.08.010 PMid: 35190062
Corvera S, Solivan-Rivera J, Yang Loureiro Z. Angiogenesis in adipose tissue and obesity. Angiogenesis. 2022;25(4):439-453. https://doi.org/10.1007/s10456-022-09848-3 PMid: 35857195
Pu LLQ. Fat grafting for facial rejuvenation: My preferred approach. Clin Plast Surg. 2020;47(1):19-29. https://doi.org/10.1016/j.cps.2019.08.002 PMid: 31739894
Gal S, Xue Y, Pu LLQ. What do we know now about autologous fat grafting? Ann Plast Surg. 2019;83(4S):S17-S20. https://doi.org/10.1097/SAP.0000000000002097 PMid: 31513062
Hoon SY, Gao J, Xu L, et al. Effect of additive-assisted fat transplantation on fat graft survival rate: A preliminary experimental study based on a rabbit animal model. Ann Chir Plast Esthet. 2021;66(6):440-446. https://doi.org/10.1016/j.anplas.2021.03.007 PMid: 33966905
Chen B, Cai J, Wei Y, et al. Exosomes are comparable to source adipose stem cells in fat graft retention with up-regulating early inflammation and angiogenesis. Plast Reconstr Surg. 2019;144(5):816e-827e. https://doi.org/10.1097/PRS.0000000000006175 PMid: 31385891
Cai J, Li B, Liu K, et al. Low-dose G-CSF improves fat graft retention by mobilizing endogenous stem cells and inducing angiogenesis, whereas high-dose G-CSF inhibits adipogenesis with prolonged inflammation and severe fibrosis. Biochem Biophys Res Commun. 2017;491(3):662-667. https://doi.org/10.1016/j.bbrc.2017.07.147 PMid: 28756227.
Lin J, Zhu S, Liao Y, et al. Spontaneous browning of white adipose tissue improves angiogenesis and reduces macrophage infiltration after fat grafting in mice. Front Cell Dev Biol. 2022;10:845158. https://doi.org/10.3389/fcell.2022.845158 PMid: 35557960
Ma Q, Reiter RJ, Chen Y. Role of melatonin in controlling angiogenesis under physiological and pathological conditions. Angiogenesis. 2020;23(2):91-104. https://doi.org/10.1007/s10456-019-09689-7 PMid: 31650428
Chang J, Song WJ, Soedono S, et al. Adenosine-prefabricated adipose tissue improves fat graft survival by promoting VEGF-dependent angiogenesis. Tissue Eng Regen Med. 2022;19(5):1051-1061. https://doi.org/10.1007/s13770-022-00470-4 PMid: 35852724
Yu P, Zhai Z, Lu H, et al. Platelet-rich fibrin improves fat graft survival possibly by promoting angiogenesis and adipogenesis, inhibiting apoptosis, and regulating collagen production. Aesthet Surg J. 2020;40(9):NP530-NP545. https://doi.org/10.1093/asj/sjaa084 PMid: 32249908
Cai J, Feng J, Liu K, et al. Early macrophage infiltration improves fat graft survival by inducing angiogenesis and hematopoietic stem cell recruitment. Plast Reconstr Surg. 2018;141(2):376-386. https://doi.org/10.1097/PRS.0000000000004028 PMid: 29036027
Correia de Sousa M, Gjorgjieva M, Dolicka D, et al. Deciphering miRNAs' action through miRNA editing. Int J Mol Sci. 2019;20(24):6249. https://doi.org/10.3390/ijms20246249 PMid: 31835747
Kir D, Schnettler E, Modi S, et al. Regulation of angiogenesis by microRNAs in cardiovascular diseases. Angiogenesis. 2018;21(4):699-710. https://doi.org/10.1007/s10456-018-9632-7 PMid: 29956018
Ji H, Wang H, Ji Q, et al. Differential expression profile of microRNA in yak skeletal muscle and adipose tissue during development. Genes Genomics. 2020;42(11):1347-1359. https://doi.org/10.1007/s13258-020-00988-8 PMid: 32996042
Davey GM, Heath WR, Starr R. SOCS1: A potent and multifaceted regulator of cytokines and cell-mediated inflammation. Tissue Antigens. 2006;67(1):1-9. https://doi.org/10.1111/j.1399-0039.2005.00532.x PMid: 16451196
McFarlin BK, Tanner EA, Hill DW, et al. Prebiotic/probiotic supplementation resulted in reduced visceral fat and mRNA expression associated with adipose tissue inflammation, systemic inflammation, and chronic disease risk. Genes Nutr. 2022;17(1):15. https://doi.org/10.1186/s12263-022-00718-7 PMid: 36437471
Strong AL, Cederna PS, Rubin JP, et al. The current state of fat grafting: A review of harvesting, processing, and injection techniques. Plast Reconstr Surg. 2015;136(4):897-912. https://doi.org/10.1097/PRS.0000000000001590 PMid: 26086386
Abdollahi M, Kato M, Lanting L, et al. miR-379 mediates insulin resistance and obesity through impaired angiogenesis and adipogenesis regulated by ER stress. Mol Ther Nucleic Acids. 2022;30:115-130. https://doi.org/10.1016/j.omtn.2022.09.015 PMid: 36250205
Kato M, Abdollahi M, Tunduguru R, et al. Publisher Correction: miR-379 deletion ameliorates features of diabetic kidney disease by enhancing adaptive mitophagy via FIS1. Commun Biol. 2021;4(1):175. https://doi.org/10.1038/s42003-021-01691-4 PMid: 33542531
Li M, Gao X, Liu K, et al. MiR-379-5p aggravates experimental autoimmune uveitis in mice via the regulation of SEMA3A. Autoimmunity. 2021;54(5):275-283. https://doi.org/10.1080/08916934.2021.1931841 PMid: 34060391
Lertkiatmongkol P, Liao D, Mei H, et al. Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr Opin Hematol. 2016;23(3):253-259. https://doi.org/10.1097/MOH.0000000000000239 PMid: 27055047
Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem. 2013;153(1):13-19. https://doi.org/10.1093/jb/mvs136 PMid: 23172303
Poza-Guedes P, Barrios Y, Fuentes V, et al. Downregulation of angiogenesis factors, VEGF and PDGF, after rapid IgE desensitization and oral immunotherapy in children with food allergy. Biomed Res Int. 2014;2014:372567. https://doi.org/10.1155/2014/372567 PMid: 24995287
Galic S, Sachithanandan N, Kay TW, et al. Suppressor of cytokine signalling (SOCS) proteins as guardians of inflammatory responses critical for regulating insulin sensitivity. Biochem J. 2014;461(2):177-188. https://doi.org/10.1042/BJ20140143 PMid: 24966052.
Jiang K, Yang J, Guo S, et al. Peripheral circulating exosome-mediated delivery of miR-155 as a novel mechanism for acute lung inflammation. Mol Ther. 2019;27(10):1758-1771. https://doi.org/10.1016/j.ymthe.2019.07.003 PMid: 31405809
Noh K, Kim M, Kim Y, et al. miR-122-SOCS1-JAK2 axis regulates allergic inflammation and allergic inflammation-promoted cellular interactions. Oncotarget. 2017;8(38):63155-63176. https://doi.org/10.18632/oncotarget.19149 PMid: 28968979
Wang Y, Kong XQ, Wu F, et al. SOCS1/JAK2/STAT3 axis regulates early brain injury induced by subarachnoid hemorrhage via inflammatory responses. Neural Regen Res. 2021;16(12):2453-2464. https://doi.org/10.4103/1673-5374.313049 PMid: 33907034
Lopez-Sanz L, Bernal S, Recio C, et al. SOCS1-targeted therapy ameliorates renal and vascular oxidative stress in diabetes via STAT1 and PI3K inhibition. Lab Invest. 2018;98(10):1276-1290. https://doi.org/10.1038/s41374-018-0043-6 PMid: 29540859
Zhang Z, Chen H, Zhou L, et al. Macrophage derived exosomal miRNA 155 promotes tubular injury in ischemia induced acute kidney injury. Int J Mol Med. 2022;50(3):116. https://doi.org/10.3892/ijmm.2022.5172 PMid: 35795997
Zhang H, Zhao Z, Pang X, et al. Genistein protects against Ox-LDL-induced inflammation through MicroRNA-155/SOCS1-mediated repression of NF-?B signaling pathway in HUVECs. Inflammation. 2017;40(4):1450-1459. https://doi.org/10.1007/s10753-017-0588-3 PMid: 28550396
Patra D, Roy S, Arora L, et al. miR-210-3p promotes obesity-induced adipose tissue inflammation and insulin resistance by targeting SOCS1-mediated NF-?B pathway. Diabetes. 2023;72(3):375-388. https://doi.org/10.2337/db22-0284 PMid: 36469307
Shin DJ. Breast augmentation by fat transplantation with adipose-derived stem/stromal cells. Aesthet Surg J Open Forum. 2020;2(1):ojaa007. https://doi.org/10.1093/asjof/ojaa007 PMid: 33791627
Yi Y, Hu W, Zhao C, et al. Deciphering the emerging roles of adipocytes and adipose-derived stem cells in fat transplantation. Cell Transplant. 2021;30:963689721997799. https://doi.org/10.1177/0963689721997799 PMid: 33650919
Zhang XX, Wang YM, Su YD, et al. MiR-26a regulated adipogenic differentiation of ADSCs induced by insulin through CDK5/FOXC2 pathway. Mol Cell Biochem. 2021;476(4):1705-1716. https://doi.org/10.1007/s11010-020-04033-w PMid: 33423166
Li X, Zhao Y, Li X, et al. MicroRNA-150 modulates adipogenic differentiation of adipose-derived stem cells by targeting Notch3. Stem Cells Int. 2019;2019:2743047. https://doi.org/10.1155/2019/2743047 PMid: 31781236
Lockwood KC, Lear TB, Rajbhandari S, et al. KIAA0317 regulates SOCS1 stability to ameliorate colonic inflammation. FEBS J. 2023;290(15):3802-3811. https://doi.org/10.1111/febs.16780 PMid: 36938956
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Electronic Journal of Biotechnology