Long non-coding RNA KCNQ1 opposite strand/antisense transcript 1, a potential biomarker for glaucoma, accelerates glaucoma progression via microRNA-93-5p/Homeobox box 3 axis

Graphical abstract

Long non-coding RNA KCNQ1 opposite strand/antisense transcript 1, a potential biomarker for glaucoma, accelerates glaucoma progression via microRNA-93-5p/Homeobox box 3 axis
PDF
HTML

Keywords

Antisense transcript
Biomarkers
Glaucoma
Homeobox box 3
Long non-coding RNA
MicroRNA-93-5p
Neurodegenerative disease
Ophthalmic testing
Opposite strand
Retinal ganglion cells
Risk factor

Categories

How to Cite

1.
Xie Z, Wang H, Liu L, Zhang H, Liu J. Long non-coding RNA KCNQ1 opposite strand/antisense transcript 1, a potential biomarker for glaucoma, accelerates glaucoma progression via microRNA-93-5p/Homeobox box 3 axis. Electron. J. Biotechnol. [Internet]. 2024 Apr. 17 [cited 2024 Nov. 13];67:23-3. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/2023.10.002

Abstract

Background: Glaucoma is marked by retinal neuron death in the ganglion cell layer, leading to irreversible vision loss. Aberrant long non-coding RNA (lncRNA) expression is associated with glaucoma. The study was to explore the latent molecular mechanism of lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) in N-methyl-D-aspartate (NMDA)-stimulated glaucoma.

Results: The data demonstrated that KCNQ1OT1 expression was elevated in glaucoma patients, serving as a diagnostic biomarker of glaucoma. Rats injected with NMDA developed visual loss and retinopathy and expressed high KCNQ1OT1. After treating retinal ganglion cells (RGCs) with NMDA, cell proliferation was suppressed and apoptosis was augmented. Silenced KCNQ1OT1 or HOXB3 or elevated miR-93-5p alleviated NMDA-induced suppression of RGC growth. KCNQ1OT1 mediated miR-93-5p expression by targeting homeobox box 3 (HOXB3). The protection of silenced KCNQ1OT1 in NMDA-treated RGCs was turned around by elevated HOXB3.

Conclusions: Overall, KCNQ1OT1 accelerates glaucoma progression via miR-93-5p/HOXB3 axis.

https://doi.org/10.1016/j.ejbt.2023.10.002
PDF
HTML

References

Li C, Qiu G, Liu B, et al. Neuroprotective effect of lignans extracted from Eucommia ulmoides Oliv. on glaucoma-related neurodegeneration. Neurological Sciences 2016;37(5):755-762. https://doi.org/10.1007/s10072-016-2491-3 PMid: 26829935

Youngblood H, Hauser M, Liu Y. Update on the genetics of primary open-angle glaucoma. Experimental Eye Research 2019;188:107795. https://doi.org/10.1016/j.exer.2019.107795 PMid: 31525344

MacGregor S, Ong J, An J, et al. Genome-wide association study of intraocular pressure uncovers new pathways to glaucoma. Nature Genetics 2018;50(8):1067-1071. https://doi.org/10.1038/s41588-018-0176-y PMid: 30054594

Jonas J, Aung T, Bourne R, et al. Glaucoma. Lancet 2017;390(10108):2183-2193. https://doi.org/10.1016/S0140-6736(17)31469-1 PMid: 28577860

Garcia-Medina J, Garcia-Medina M, Garrido-Fernandez P, et al. A two-year follow-up of oral antioxidant supplementation in primary open-angle glaucoma: an open-label, randomized, controlled trial. Acta Ophthalmologica 2015;93(6):546-554. https://doi.org/10.1111/aos.12629 PMid: 25545196

Kopp F, Mendell J. Functional classification and experimental dissection of long noncoding RNAs. Cell 2018;172(3):393-407. https://doi.org/10.1016/j.cell.2018.01.011 PMid: 29373828

Wawrzyniak O, Zar?bska ?, Rolle K, et al. Circular and long non-coding RNAs and their role in ophthalmologic diseases. Acta Biochimica Polonica 2018;65(4):497-508. https://doi.org/10.18388/abp.2018_2639 PMid: 30428483

Li F, Wen X, Zhang H, et al. Novel insights into the role of long noncoding RNA in ocular diseases. International Journal of Molecular Sciences 2016;17(4):478. https://doi.org/10.3390/ijms17040478 PMid: 27043545

Li H, You Q, Xu L, et al. Long non-coding RNA-MALAT1 mediates retinal ganglion cell apoptosis through the PI3K/Akt signaling pathway in rats with glaucoma. Cellular Physiology and Biochemistry 2017;43(5):2117-2132. https://doi.org/10.1159/000484231 PMid: 29065394

Lin Z, Long P, Zhao Z, et al. Long noncoding RNA KCNQ1OT1 is a prognostic biomarker and mediates CD8 T cell exhaustion by regulating CD155 expression in colorectal cancer. International Journal of Biological Sciences 2021;17(7):1757-1768. https://doi.org/10.7150/ijbs.59001 PMid: 33994860

Zhang M, Cheng K. Long non-coding RNA KCNQ1OT1 promotes hydrogen peroxide-induced lens epithelial cell apoptosis and oxidative stress by regulating miR-223-3p/BCL2L2 axis. Experimental Eye Research 2021;206:108543. https://doi.org/10.1016/j.exer.2021.108543 PMid: 33744257

Li X, Jin X, Wang J, et al. Dexamethasone attenuates dry eye-induced pyroptosis by regulating the KCNQ1OT1/miR-214 cascade. Steroids 2022;186:109073. https://doi.org/10.1016/j.steroids.2022.109073 PMid: 35779698

Wang W, Du SL, Zhang XL. Corneal deformation response in patients with primary open-angle glaucoma and in healthy subjects analyzed by Corvis ST. Investigative Ophthalmology & Visual Science 2015;56(9):5557-65. https://doi.org/10.1167/iovs.15-16926 PMid: 26305527

Zheng M, Zheng YL, Gao MM, et al. Expression and clinical value of lncRNA MALAT1 and lncRNA ANRIL in glaucoma patients. Experimental and Therapeutic Medicine 2020;19(2):1329-1335. https://doi.org/10.3892/etm.2019.8345

Lambuk L, Jafri AJA, Arfuzir NNN, et al. Neuroprotective effect of magnesium acetyltaurate against NMDA-induced excitotoxicity in rat retina. Neurotoxicity Research 2017;31(1):31-45. https://doi.org/10.1007/s12640-016-9658-9 PMid: 27568334

Luo X, Yu Y, Xiang Z, et al. Tetramethylpyrazine nitrone protects retinal ganglion cells against N-methyl-?-aspartate-induced excitotoxicity. Journal of Neurochemistry 2017;141(3):373-386. https://doi.org/10.1111/jnc.13970 PMid: 28160291

Kroeber M, Davis N, Holzmann S, et al. Reduced expression of Pax6 in lens and cornea of mutant mice leads to failure of chamber angle development and juvenile glaucoma. Human Molecular Genetics 2010;19(17):3332-3342. https://doi.org/10.1093/hmg/ddq237 PMid: 20538882

Gao F, Li T, Hu J, et al. Comparative analysis of three purification protocols for retinal ganglion cells from rat. Molecular Vision 2016;22:387-400. PMid: 27122968

Lin B, Koizumi A, Tanaka N, et al. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proceedings of the National Academy of Sciences of the United States of America 2008;105(41):16009-16014. https://doi.org/10.1073/pnas.0806114105 PMid: 18836071

Hindle A, Thoonen R, Jasien J, et al. Identification of candidate miRNA biomarkers for glaucoma. Investigative Ophthalmology & Visual Science 2019;60(1):134-146. https://doi.org/10.1167/iovs.18-24878 PMid: 30629727

Zhang F, Zhao Y, Cao M, et al. The potential role of long noncoding RNAs in primary open-angle glaucoma. Graefe's Archive for Clinical and Experimental Ophthalmology 2021;259:3805-3814. https://doi.org/10.1007/s00417-021-05279-w PMid: 34244823

Chen B, Ma J, Li C, et al. Long noncoding RNA KCNQ1OT1 promotes proliferation and epithelial?mesenchymal transition by regulation of SMAD4 expression in lens epithelial cells. Molecular Medicine Reports 2018;18(1):16-24. https://doi.org/10.3892/mmr.2018.8987

Yao L, Yang L, Song H, et al. MicroRNA miR-29c-3p modulates FOS expression to repress EMT and cell proliferation while induces apoptosis in TGF-?2-treated lens epithelial cells regulated by lncRNA KCNQ1OT1. Biomedicine & Pharmacotherapy 2020;129:110290. https://doi.org/10.1016/j.biopha.2020.110290 PMid: 32534225

Zhang Y, Song Z, Li X, et al. Long noncoding RNA KCNQ1OT1 induces pyroptosis in diabetic corneal endothelial keratopathy. American Journal of Physiology Cell Physiology 2020;318(2):C346-C359. https://doi.org/10.1152/ajpcell.00053.2019 PMid: 31693400

Liu J, Dong Y, Wen Y, et al. LncRNA KCNQ1OT1 knockdown inhibits viability, migration and epithelial-mesenchymal transition in human lens epithelial cells via miR-26a-5p/ITGAV/TGF-beta/Smad3 axis. Experimental Eye Research 2020;200:108251. https://doi.org/10.1016/j.exer.2020.108251 PMid: 32950535

Jin X, Jin H, Shi Y, et al. Long Non-Coding RNA KCNQ1OT1 Promotes Cataractogenesis via miR-214 and Activation of the Caspase-1 Pathway. Cellular Physiology and Biochemistry 2017;42(1):295-305. https://doi.org/10.1159/000477330 PMid: 28535504

Bürger S, Meng J, Zwanzig A, et al. Pigment Epithelium-Derived Factor (PEDF) receptors are involved in survival of retinal neurons. International Journal of Molecular Sciences 2020;22(1):369. https://doi.org/10.3390/ijms22010369 PMid: 33396450

Roedl J, Bleich S, Reulbach U, et al. Homocysteine levels in aqueous humor and plasma of patients with primary open-angle glaucoma. Journal of Neural Transmission 2007;114(4):445-450. https://doi.org/10.1007/s00702-006-0556-9 PMid: 16932990

Benitez-Del-Castillo J, Cantu-Dibildox J, Sanz-González SM, et al. Cytokine expression in tears of patients with glaucoma or dry eye disease: A prospective, observational cohort study. European Journal of Ophthalmology 2019;29(4):437-443. https://doi.org/10.1177/1120672118795399 PMid: 30175615

Aketa N, Yamaguchi T, Suzuki T, et al. Iris damage is associated with elevated cytokine levels in aqueous humor. Investigative Ophthalmology & Visual Science 2017;58(6):BIO42-BIO51. https://doi.org/10.1167/iovs.17-21421 PMid: 28475702

Lambuk L, Iezhitsa I, Agarwal R, et al. Antiapoptotic effect of taurine against NMDA-induced retinal excitotoxicity in rats. Neurotoxicology 2019;70:62-71. https://doi.org/10.1016/j.neuro.2018.10.009 PMid: 30385388

Guo R, Shen W, Su C, et al. Relationship between the pathogenesis of glaucoma and miRNA. Ophthalmic Research 2017;57(3):194-199. https://doi.org/10.1159/000450957 PMid: 28073110

Liu Y, Chen Y, Wang Y, et al. microRNA profiling in glaucoma eyes with varying degrees of optic neuropathy by using next-generation sequencing. Investigative Ophthalmology & Visual Science 2018;59(7):2955-2966. https://doi.org/10.1167/iovs.17-23599 PMid: 30025119

Li R, Jin Y, Li Q, et al. MiR-93-5p targeting PTEN regulates the NMDA-induced autophagy of retinal ganglion cells via AKT/mTOR pathway in glaucoma. Biomedicine & Pharmacotherapy 2018;100:1-7. https://doi.org/10.1016/j.biopha.2018.01.044 PMid: 29421576

Tan C, Shi W, Zhang Y, et al. MiR-93-5p inhibits retinal neurons apoptosis by regulating PDCD4 in acute ocular hypertension model. Life Science Alliance 2023;12;6(9):e202201732 https://doi.org/10.26508/lsa.202201732 PMid: 37308277

Chan K, Qi J, Sham M. Multiple coding and non-coding RNAs in the Hoxb3 locus and their spatial expression patterns during mouse embryogenesis. Biochemical and Biophysical Research Communications 2010;398(2):153-159. https://doi.org/10.1016/j.bbrc.2010.05.150 PMid: 20515659

Liu X, Shen X, Zhang J. Long non-coding RNA LINC00514 promotes the proliferation and invasion through the miR-708-5p/HOXB3 axis in cervical squamous cell carcinoma. Environmental Toxicology 2021;37(1):161-170. https://doi.org/10.1002/tox.23387 PMid: 34652879

Cui M, Chen M, Shen Z, et al. LncRNA-UCA1 modulates progression of colon cancer through regulating the miR-28-5p/HOXB3 axis. Journal of Cellular Biochemistry 2019;120(5):6926-6936. https://doi.org/10.1002/jcb.27630 PMid: 30652355

Yang D, Yan R, Zhang X, et al. Deregulation of MicroRNA-375 inhibits cancer proliferation migration and chemosensitivity in pancreatic cancer through the association of HOXB3. American Journal of Translational Research 2016;8(3):1551-1559. PMid: 27186281

Tao W, Ayala-Haedo J, Field M, et al. RNA-sequencing gene expression profiling of orbital adipose-derived stem cell population implicate HOX genes and WNT signaling dysregulation in the pathogenesis of thyroid-associated orbitopathy. Investigative Ophthalmology & Visual Science 2017;58(14):6146-6158. https://doi.org/10.1167/iovs.17-22237 PMid: 29214313

Yang Z, Hu H, Zou Y, et al. miR-7 Reduces high glucose induced-damage via HoxB3 and PI3K/AKT/mTOR signaling pathways in retinal pigment epithelial cells. Current Molecular Medicine 2020;20(5):372-378. https://doi.org/10.2174/1566524019666191023151137 PMid: 31702491

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Electronic Journal of Biotechnology