Unraveling SARS-CoV-2-associated lncRNAs' prognostic significance in lung adenocarcinoma-survival, immunity, and chemotherapy responses

Graphical abstract

Unraveling SARS-CoV-2-associated lncRNAs' prognostic significance in lung adenocarcinoma-survival, immunity, and chemotherapy responses
PDF
HTML

Keywords

Clinical prognosis
COVID-19
Drug sensitivity
Immune function
lncRNA
Lung adenocarcinoma
Lung cancer
Molecular biomarkers
Prognostic risk model
SARS-CoV-2
Therapeutic targets

Categories

How to Cite

1.
Zhou Q, Yuan T, Xie Z, Chen Y. Unraveling SARS-CoV-2-associated lncRNAs’ prognostic significance in lung adenocarcinoma-survival, immunity, and chemotherapy responses. Electron. J. Biotechnol. [Internet]. 2024 Apr. 17 [cited 2024 Nov. 13];67:13-22. Available from: https://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/2023.10.001

Abstract

Background: This study investigates the link between SARS-CoV-2-associated long non-coding RNAs (lncRNAs) and lung adenocarcinoma (LUAD). LUAD is a prevalent and aggressive lung cancer type. The study aims to identify prognostic lncRNAs and construct a predictive model while shedding light on potential therapeutic targets during the COVID-19 era.

Results: Eight SARS-CoV-2-associated lncRNAs with significant prognostic value in LUAD were identified, forming a robust prognostic risk model. The model exhibited strong predictive performance, with high area under the ROC curve (AUC) values at one, three, and five years. Furthermore, the risk score was an independent prognostic factor, correlating with the cancer stage. Notably, differences in immune function, drug sensitivity, and immune checkpoint expression were observed between high- and low-risk groups.

Conclusions: This study unveils eight SARS-CoV-2-associated lncRNAs as valuable prognostic markers in LUAD, yielding a reliable prognostic risk model. Additionally, the model's ability to predict patient outcomes and its correlation with cancer stage underscores its clinical utility. The observed variances in immune function, drug sensitivity, and immune checkpoint expression suggest potential avenues for personalized LUAD treatment strategies. Clinicians can utilize the prognostic risk model to predict LUAD patient outcomes, informing treatment decisions. The insights into immune function, drug sensitivity, and immune checkpoints offer opportunities for tailored therapies, potentially enhancing patient outcomes. This study underscores the importance of considering the interplay between SARS-CoV-2-associated factors and cancer biology, especially in the context of the COVID-19 pandemic.

https://doi.org/10.1016/j.ejbt.2023.10.001
PDF
HTML

References

Ettinger DS, Wood DE, Aisner D, et al. NCCN guidelines insights: non-small cell lung cancer, Version 2.2021. J Natl Compr Canc Netw, 2021;19(3):254-266. https://doi.org/10.6004/jnccn.2021.0013 PMid: 33668021

Hutchinson BD, Shroff GS, Truong MT, et al. Spectrum of lung adenocarcinoma. Semin Ultrasound CT MRI, 2019;40(3):255-264. https://doi.org/10.1053/j.sult.2018.11.009 PMid: 31200873

Succony L, Rassl DM, Barker AP, et al. Adenocarcinoma spectrum lesions of the lung: Detection, pathology and treatment strategies. Cancer Treat Rev, 2021;99:102237. https://doi.org/10.1016/j.ctrv.2021.102237 PMid: 34182217

Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5 PMid: 31986264

Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020;395(10224):565-574. https://doi.org/10.1016/S0140-6736(20)30251-8 PMid: 32007145

Lai CC, Shih TP, Ko WC, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents, 2020;55(3):105924. https://doi.org/10.1016/j.ijantimicag.2020.105924 PMid: 32081636

Malkani N, Rashid MU. SARS-COV-2 infection and lung tumor microenvironment. Mol Biol Rep. 2021;48(2):1925-1934. https://doi.org/10.1007/s11033-021-06149-8 PMid: 33486674

Moujaess E, Kourie HR, Ghosn M. Cancer patients and research during COVID-19 pandemic: A systematic review of current evidence. Crit Rev Oncol Hematol, 2020;150:102972. https://doi.org/10.1016/j.critrevonc.2020.102972 PMid: 32344317

Tortorici MA, Veesler D. Structural insights into coronavirus entry. In: FA Rey editor, Complementary strategies to understand virus structure and function. Adv Virus Res. 2019;105(Chapter 4):93-116. https://doi.org/10.1016/bs.aivir.2019.08.002 PMid: 31522710

Wan Y, Shang J, Graham R, et al. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J Virol, 2020;94(7):e00127-20. https://doi.org/10.1128/JVI.00127-20 PMid: 31996437.

Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: Insights into functions. Nat Rev Genet, 2009;10(3):155-159. https://doi.org/10.1038/nrg2521 PMid: 19188922

Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 2010;464(7291):1071-1076. https://doi.org/10.1038/nature08975 PMid: 20393566

Therneau, T; 2021. Survival: A package for survival analysis in R. R package version 3.2-13 [cited 2022 June 13]. Available from: https://CRAN.R-project.org/package=survival.

Friedman J, Hastie T, Tibshirani R. et al. glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models. R package version 4.1-2 [cited 2022 June 17]. Available from: https://CRAN.R-project.org/package=glmnet.

Pérez Fernández S, Martínez Camblor P, Filzmoser P, et al. nsROC: An R package for non-standard ROC curve analysis. The R Journal, 2018;10(2):55-77. https://doi.org/10.32614/RJ-2018-043

Harrell Jr FE. rms: Regression Modeling Strategies. R package version 6.2-0; 2020 [cited 2022 June 21]. Available from: https://CRAN.R-project.org/package=rms.

Jin YH, Cai L, Cheng ZS, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med Res, 2020;7(1):4. https://doi.org/10.1186/s40779-020-0233-6 PMid: 32029004

Li Y, Zhou W, Yang L, et al. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Res, 2020;157:104833. https://doi.org/10.1016/j.phrs.2020.104833 PMid: 32302706.

Ashraf UM, Abokor AA, Edwards JM, et al. SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiol Genomics, 2021;53(2):51-60. https://doi.org/10.1152/physiolgenomics.00087.2020 PMid: 33275540

Chen L, Liu Y, Wu J, et al. Lung adenocarcinoma patients have higher risk of SARS-CoV-2 infection. Aging, 2021;13(2):1620-1632. https://doi.org/10.18632/aging.202375 PMid: 33429366

He C, Hua X, Sun S, et al. Integrated bioinformatic analysis of SARS-CoV-2 infection related genes ACE2, BSG and TMPRSS2 in aerodigestive cancers. J Inflam Res, 2021;14:791-802. https://doi.org/10.2147/JIR.S300127 PMid: 33732005

Peng Z, Liu C, Wu M. New insights into long noncoding RNAs and their roles in glioma. Mol Cancer, 2018;17(1):61. https://doi.org/10.1186/s12943-018-0812-2 PMid: 29458374

Zhang J, Xiao J, Wang Y, et al. A universal co-expression gene network and prognostic model for hepatic-biliary-pancreatic cancers identified by integrative analyses. FEBS Open Bio, 2022;12(11):2006-2024. https://doi.org/10.1002/2211-5463.13478 PMid: 36054420

Ye L, Jin W. Identification of lncRNA-associated competing endogenous RNA networks for occurrence and prognosis of gastric carcinoma. J Clin Lab Anal, 2021;35(12):e24028. https://doi.org/10.1002/jcla.24028 PMid: 34704289

Gong W, Yang L, Wang Y, et al. Analysis of survival-related lncRNA landscape identifies a role for LINC01537 in energy metabolism and lung cancer progression. Int J Mol Sci, 2019;20(15):3713. https://doi.org/10.3390/ijms20153713 PMid: 31374807

Zhong GY, Tan JN, Huang J, et al. LncRNA LINC01537 promotes gastric cancer metastasis and tumorigenesis by stabilizing RIPK4 to activate NF-?B signaling. Cancers, 2022;14(21):5237. https://doi.org/10.3390/cancers14215237 PMid: 36358656

Hu H, Zhang J, Li Y, et al. LncRNA SPANXA2-OT1 participates in the occurrence and development of EMT in calcium oxalate crystal-induced kidney injury by adsorbing miR-204 and up-regulating Smad5. Front Med, 2021;8:719980. https://doi.org/10.3389/fmed.2021.719980 PMid: 34646842

Jaé N, Heumüller AW, Fouani Y, et al. Long non-coding RNAs in vascular biology and disease. Vasc Pharmacol, 2019;114:13-22. https://doi.org/10.1016/j.vph.2018.03.003 PMid: 30910127

Li H, Pan Z, Chen Q, et al. SMILR aggravates the progression of atherosclerosis by sponging miR-10b-3p to regulate KLF5 expression. Inflammation, 2020;43(5):1620-1633. https://doi.org/10.1007/s10753-020-01237-6 PMid: 32367412

Lei S, Peng F, Li ML, et al. LncRNA-SMILR modulates RhoA/ROCK signaling by targeting miR-141 to regulate vascular remodeling in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol, 2020;319(2):H377-91-h391. https://doi.org/10.1152/ajpheart.00717.2019 PMid: 32559140

Byun S, Affolter KE, Snow AK, et al. Differential methylation of G-protein coupled receptor signaling genes in gastrointestinal neuroendocrine tumors. Sci Rep, 2021;11(1):12303. https://doi.org/10.1038/s41598-021-91934-5 PMid: 34112938

Lu Y, Luo X, Wang Q, et al. A novel necroptosis-related lncRNA signature predicts the prognosis of lung adenocarcinoma. Front Genet, 2022;13:862741. https://doi.org/10.3389/fgene.2022.862741 PMid: 35368663

He C, Yin H, Zheng J, et al. Identification of immune-associated lncRNAs as a prognostic marker for lung adenocarcinoma. Transl Cancer Res, 2021;10(2):998-1012. https://doi.org/10.21037/tcr-20-2827 PMid: 35116427

Gong Z, Li Q, Li J, et al. A novel signature based on autophagy-related lncRNA for prognostic prediction and candidate drugs for lung adenocarcinoma. Transl Cancer Res, 2022;11(1):14-28. https://doi.org/10.21037/tcr-21-1554 PMid: 35261881

Liu J, Liu Q, Shen H, et al. Identification and validation of a three pyroptosis-related lncRNA signature for prognosis prediction in lung adenocarcinoma. Front Genet, 2022;13:838624. https://doi.org/10.3389/fgene.2022.838624 PMid: 35928454

Wang H, Wang X, Xu L, et al. High expression levels of pyrimidine metabolic rate-limiting enzymes are adverse prognostic factors in lung adenocarcinoma: a study based on the Cancer Genome Atlas and Gene Expression Omnibus datasets. Purinergic Signal, 2020;16(3):347-366. https://doi.org/10.1007/s11302-020-09711-4 PMid: 32638267

Lattová E, Sk?i?ková J, Hausnerová J, et al. N-Glycan profiling of lung adenocarcinoma in patients at different stages of disease. Mod Pathol, 2020;33(6):1146-56. https://doi.org/10.1038/s41379-019-0441-3 PMid: 31907375

Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol, 2015;15(11):669-682. https://doi.org/10.1038/nri3902 PMid: 26471778

Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med, 2013;19(11):1423-1437. https://doi.org/10.1038/nm.3394 PMid: 24202395

Zhang C, Cheng W, Ren X, et al. Tumor purity as an underlying key factor in glioma. Clin Cancer Res, 2017;23(20):6279-6291. https://doi.org/10.1158/1078-0432.CCR-16-2598 PMid: 28754819

Zhao Z, Zhao D, Xia J, et al. Immunoscore predicts survival in early-stage lung adenocarcinoma patients. Frontiers in Oncology, 2020;10:691. https://doi.org/10.3389/fonc.2020.00691 PMid: 32457841

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2024 Electronic Journal of Biotechnology