Riverina high school students' views of biotechnology Heather Cavanagh* Jennie Hood Jenny Wilkinson *Corresponding author
A survey investigating
the knowledge and perception of biotechnology by high school students
living in the rural Riverina region of
Modern biotechnological processes are being continuously adapted for the production of crops, foods and pharmaceuticals which has lead to an increase in discussion about the benefits, or otherwise, of the technology. While it has been suggested that the attitude of the general public towards scientific developments in general are closely associated with trust in sources of information the role of increased scientific literacy and understanding of the technology remain unclear (Turney, 1996; Einsiedel, 2000). It has further been suggested that an increased understanding of biotechnology will assist people in making more informed decisions about this technology (Harms, 2002). In
line with this belief, high school curricula in many countries, including
Numerous
studies have been carried out to date examining the publics' perception
and understanding of biotechnology. In A
questionnaire, based on those published by Biotechnology Australia
(MBA, 2001; Myriad Research, 2001),
was completed by upper-level high school students (years 10-12) attending
a Biotechnology Innovation Festival in Wagga Wagga co-hosted by Charles
Sturt University, Wagga Wagga City Council and Biotechnology Australia.
Wagga Wagga is the largest centre (population ~ 60,000) within the
Riverina area of New South Wales (NSW) and has 5 high schools. The
majority of the surrounding smaller townships have a single high school
or one school shared between separate communities (NSW Department
of Education). While 'school' attendance at the festival was voluntary,
student attendance from an attending school was mandatory for students
enrolled in the Biology HSC (Higher School Certificate). The questionnaire
was completed as students entered the festival venue in May The data was analysed using SPSS (Statistical Package for the Social Sciences, ver 10). Frequencies were calculated for each variable and comparisons made using Chi squared with differences deemed to be significant when p < 0.05. Correlations between variables were calculated using Pearsons correlation. Eighty-seven completed questionnaires were received from festival attendees. The mean age of respondents was 16.8 years (standard deviation 0.8 years; range 15-18 years) with 57.5% male and 42.5% female. Sixty one percent of respondents indicated that religion was not important to them with 22% indicating that religion was important and the remainder (17%) that religion was very important. Responses to questions relating to knowledge of biotechnology are shown in Table 1. Most students answered six of the seven questions correctly, however the highest percentage of correct responses was 75.9% (use of yeast to make beer). The four questions relating to transfer of genes or genetically modified organisms elicited 'unsure' responses from greater than 20% of respondents. The information sources students trusted for objective information about biotechnology are shown in Figure 1. Research scientists / universities were named as trusted sources of objective information most frequently (80.7% of respondents) with medical professionals the second most frequently named (65.1%). In contrast religious organizations (13.3%), the press (16.9%) and the Internet (19.3%) were the least trusted sources of objective information. Students were also asked to indicate which of 10 statements about biotechnology they agreed with (Table 2). Statements involving benefits to human health and crime solving (statements 1, 4, 5, 8 and 10) had the highest frequency of responses (>50%). Statements relating to genetically modified crops being only of use in third world countries, human cloning and adverse effects on humans from genetically modified organisms had the lowest frequency of positive responses. Most respondents felt that the benefits of genetic engineering would either definitely (11.8%) or probably (42.4%) outweigh the risks of this technology. However a large proportion (37.6%) had mixed feelings on this issue. Only 3.5% of respondents thought that the benefits would definitely not (and 4.7% probably not) outweigh the risks of genetic engineering. Similarly most respondents thought that the recent advances in biotechnology would benefit them personally in the next 20 years (10.5% definitely, 38.4% probably) with 9.3% indicating that the advances would probably not benefit them and 5.8% that they would definitely not benefit them. The remainder (36%) indicated that they did not know whether they would benefit from the advances. There was a significant, although weak, correlation between these two responses (r = 0.2421, p = 0.025). The results for the responses to the questions relating to usefulness and safety of various uses of biotechnology are shown in Figure 2 and Figure 3, respectively. A summated score for both the indication of usefulness and safety of various uses of biotechnology was calculated. Each summated score has a maximum of 45: higher scores indicating either that the use was considered not useful or was considered dangerous. The mean score for usefulness was 17.5 (range 9-39) and for safety was 22.4 (range 9-34). There was a significant correlation between these two variables (r = 0.649, p < 0.0001). Most respondents (73.8%) thought that the potential benefits of biotechnology, to the world as a whole, outweigh the risk. However 87.2% also thought that the general public is not given enough information about biotechnology and its potential role in human health. A similar percentage (86.9%) wanted to know more about medical biotechnology with most (63.6%) preferring to receive this information via local information sessions. Responses to other types of information sources were national television (55.3%), articles in local or national newspaper (43.4% each), local television (38.2%) and local radio (32.9%). This
report describes a survey administered to upper high school level
students attending a Biotechnology Innovation festival in regional
NSW, Unlike other Australian studies we have focused on high school students; however there are interesting parallels between the data from studies of the general adult population to that collected in this study. In three Australian surveys, 43%, 39% and 30% of respondents respectively identified research institutions such as CSIRO (Commonwealth Scientific and Industrial Research Organisation) as the most trusted source of information (Biotechnology Australia Survey: YCHW, 1999; Myriad Research, 2001; MBA, 2003). The Biotechnology Australia Report (YCHW, 1999) also found that 14% of respondents trusted scientists, 11% schools/universities and 11% consumer organisations as information sources. Similarly the majority (80.7%) of the high school students in this study most trusted research scientists/universities as sources of objective information. Interestingly, this trust in the scientific community by Riverina high school students shows a significant increase over those found in national, adult population studies. This difference may be influenced by several factors such as the presence of a local University or high school students may simply be inherently more trusting of scientists than the general public. However as not all scientists or universities have the requisite expertise to comment on all or some biotechnology issues this trust may, in some circumstances, be misplaced. It
is possible that the data reported in this study was influenced by
the fact that a university and the government body Biotechnology In
agreement with other Australian studies, student's trust in government
sources and regulatory bodies was low (Macer et al. 2000),
a finding consistent across the world. For example, a study in Overall
87.2% of respondents felt that the public was not given enough information
about biotechnology and its potential role in human health and 86.9%
would like further information about medical biotechnology. The respondents
in this study had a preference for receiving this information through
local information sessions followed by television and newspapers.
This is despite the finding that there was apparent distrust of the
media as a source of objective information. Previous Australian studies
have also noted that television and newspapers are the popular sources
of information (Biotechnology Macer
et al. (2000) found that 59% of Australians viewed biotechnology
as worthwhile; however 17% also reported having significant concerns
about biotechnology. In the same study, 62% of Australians saw genetic
engineering as worthwhile while 34% had concerns about this technology.
These authors conclude that the general public will accept some products
of genetic engineering provided that some benefit is seen. Similar
percentages of respondents in both this study (54.2%) and that conducted
by Biotechnology Given that it is believed that public acceptance will play a major role in determining whether biotechnology developments such as animal generated organs for xenotransplant and stem cell technology continue to expand, it is vital that the scientific community continue to monitor the attitude of the public to biotechnology (Abelson and Hines, 1999; Einsiedel, 2000; McGloughlin, 2001). Indeed Von Wartburg and Liew (1999) state that an 'understanding of, and strength of belief in, the usefulness of a technology constitute the main factors governing its acceptance'. The reason for the significantly greater acceptance of biotechnology by the Riverina high school students surveyed in this study compared to that of the Australian general public is unknown. It is feasible that this is a 'local phenomenon' related to the interests of the students choosing to attend the festival. Whether the acceptance is true of Australian high school students in general, whether it is simply a reflection of high school students greater trust in the information sources used, or whether it is a reflection of increased understanding of biotechnology through school taught modules remains to be seen.
ABELSON, P.A. and HINES, P.J. The plant revolution. Science, 1999, vol. 285, p. 367-368. CHESS, C. Fearing fear: communication about agricultural biotechnology. AgBioForum, 1998, vol. 1,no. 1, p. 17-21. Also available from Internet: http://www.agbioforum.org/v1n1/v1n1a05-chess.htm. EINSIEDEL, E.F. Cloning and its discontents - A Canadian perspective. Nature Biotechnology, September 2000, vol. 18, p. 943-944. European Commission, Eurobarometer Survey. Europeans and biotechnology. 2002. [cited 1 June 2004]. Available from Internet: http://europa.eu.int/comm/research/biosociety/public_understanding/eurobarometer_en .htm . GASKELL, G. Agricultural biotechnology and public attitudes in the European union. AgBioForum, 2000, vol. 3, no. 2-3, p. 87-96. Also available from Internet: http://www.agbioforum.org/v3n23/v3n23a04-gaskell.htm. HARMS, U. Biotechnology education in schools. Electronic Journal of Biotechnology [online]. 15 December 2002, vol. 15, no. 3 [cited 4 may 2004]. Available from Internet: http://www.ejbiotechnology.info/content/vol5/issue3/teaching/01/index.html. ISSN: 0717 3458. HOGAN, S. Europeans and biotechnology survey of public perception. European Commission's Research Directorate-General Press Release. 2003. [cited 4 may 2004]. Available from Internet:http://www.eurekalert.org/pub_releases/2003-03/ecrd-ab032703.php. MACER,
D. and NG, M.A.C. Changing attitudes to biotechnology in MACER,
D.; AZARIAH, J. and SRINIVES, P. Attitudes to biotechnology in MACER,
D.; BEZAR, H.; HARMAN, N.; KAMADA, H. and MACER, N. Attitudes to
biotechnology in MACER,
D.; ASADA, Y.; AKIYAMA, S. and TSUZUKI, M. Bioethics in high schools
in MBA
(Millward Brown MBA
(Millward Brown MCGLOUGHLIN, M. Public perceptions of agricultural biotechnology - a nonsocial science perspective. Medical Anthropology Quarterly, 2001, vol. 15, no. 1, p. 34-38. MYRIAD
RESEARCH. Biotechnology POWELL, D.A. Food safety and the consumer - perils of poor risk communication. Canadian Journal of Animal Science, 2000, vol. 80, no. 3, p. 393-404. TURNEY, J. Public understanding of science. The Lancet, 1996, vol. 347, p. 1087-1090. VON WARTBURG, W.P. and LIEW, J. Label this science science-free. Nature, 1999, vol. 16, no. 1, p. 1. YCHW (Yann Campbell Hoare Wheeler). Biotechnology Australia Research Report into Public Attitudes Towards Biotechnology [online]. 1999 [cited 10 May 2004]. Portable Document Format. Available from Internet: http://www.biotechnology.gov.au/library/content_library/BA_pYCHW.pdf. |
Note: Electronic Journal of Biotechnology is not responsible if on-line references cited on manuscripts are not available any more after the date of publication. |