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ABSTRACT

Background: Naringin is one of the main flavonoids in citrus fruits and byproducts. This flavanone has
been shown to be a good antioxidant nutraceutical component, and it also has potential as a gut micro-
biome modulator, although its applications in final formulations represent a challenge due to its low sol-
ubility, both in water and in organic solvents. This work addresses this problem by functionalizing
naringin through enzymatic acylation.
Results: The enzymatic acylation catalyzed by the lipase Novozym® 435 and using acyl donors of differ-
ent chain lengths, acetate (C2), propionate (C3), and laurate (C12), yielded in conversions of 95% at 24 h
and 100% at 48 h, generating a monoacylated product. Both the aqueous and solvent solubility of acylated
naringin products were improved while maintaining or even increasing their antioxidant activity.
Conclusions: This acylation process significantly enhanced both the water and solvent solubility of the
acylated naringin products while preserving or even enhancing their antioxidant activity. In addition
to the gut-modulating properties of flavonoids, acylating them with short- and medium-chain fatty acids
could enhance their potential applications in the emerging field of research dedicated to understanding
and modulating gut health.
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1. Introduction

Flavonoids are polyphenolic compounds that humans consume
through vegetables and fruits. There are a variety of more than six
thousand compounds that are part of different biochemical and
physiological processes [1,2]. They are characterized as crystallized
substances of white-yellowish colors, poorly soluble in both polar
and apolar compounds, easily oxidizable and of low toxicity with
antioxidant, diuretic, and anti-inflammatory effects. In citrus fruits,
more than 60 types of flavonoids have been identified [3].

Recent research has demonstrated the anti-inflammatory and
antioxidant capacity of these compounds [4,5], they have potential
as dietary supplements for conditions such as obesity, diabetes,
hypertension, and metabolic syndrome [6,7]. Citrus flavonoids
have additional benefits, including improved endothelial function,
reduced blood pressure, and enhanced antioxidant and anti-
inflammatory effects on intestinal cells.

Naringin, a naturally present citrus fruit flavonoid. [8], influ-
ences the modulation of the intestinal microbiota [9], improving
intestinal function and health [10]. With its structure containing
multiple hydroxyl groups, naringin exhibits high antioxidant activ-
ity and has an appealing aroma for food flavorings. It has been
found to inhibit cell proliferation, migration, and invasion in colon
cancer cells [11]. Furthermore, naringin demonstrates strong anti-
inflammatory effects. Recent rat studies have shown its neuropro-
tective properties and its ability to suppress the COX-2 enzyme,
crucial for the formation of inflammatory compounds associated
with Alzheimer’'s and Huntington’s diseases [12]. These findings
indicate that naringin promotes the production of neurotropic fac-
tors, inhibits apoptosis and inflammation, and improves synaptic
function. It shows promise as an effective treatment for neurode-
generative diseases and memory deficits [13].

The beneficial effects of naringin have been proven in several
studies, and some of its biological activities go beyond its neuro-
protective capacity, which is applicable not only to Alzheimer’s
but also to several neurological disorders [14]; it has a hepatopro-
tective effect that is expressed through the regulation of fatty acid
metabolism [15], in addition to being antiasthmatic since it
reduces the production of mucus and inflammation of the bron-
chial tubes [16]. Its positive effect has also been related to the
improvement of osteoporosis, arthritis, and osteoarthritis, increas-
ing osteogenesis and preventing the accumulation of collagen in
arthritic joints [17]. Its carcinogenic effects have not only been
tested on colon cancer cells but also on cervical and ovarian cancer
cells [18].

Flavonoids are well-recognized for their inherent low solubility
in both oil and aqueous phases, a characteristic that significantly
curtails their stability and, in turn, their bioavailability and adapt-
ability for use in various formulations such as dietary supplements,
pharmaceuticals, functional foods, and cosmetic products.
Bioavailability refers to the proportion of a substance that reaches
the systemic circulation, following a particular route of administra-
tion, which, in the case of dietary flavonoids, is oral. It has been
confirmed in several studies that the bioavailability of flavonoids
is mostly <1% of the administered dose [19]. Flavonoid glycosides
are converted, or modified, to their deglycosylated, hydroxylated,
denatured, sulfated, or glucuronidated forms during absorption
and metabolism. These variations and modifications are related
to the diversity in their bioavailability and physiological functions
[20].

The absorption of flavonoids can be divided according to the
magnitude of absorption into initial, main, and marginal absorp-
tion (Fig. 1). Initial absorption begins in the stomach, where nonen-
zymatic hydrolysis takes place, producing aglycones that are
transported by passive diffusion; the small intestine is the major
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site for flavonoid absorption. Endogenic B-glucosidases are
involved at this stage to release aglycones from flavonoids. Free
aglycones are more hydrophobic and smaller than glycosides and
thus are more likely to passively penetrate the ephitelial layer. In
contrast, intact glycosides are also absorbed by the small intestine
either by inefficient passive diffusion or by the sodium-dependent
glucose transporter (SGLT1). In the colon, studies have shown that
the time required for flavones to reach concentration is 5 to 7 h
after ingestion. This indicates that 7-0 rutinosides are not deglyco-
sylated and absorbed in the intestine but pass to the colon, where
they are released by the action of bacterial enzymes such as R-
rhamnosidase and glucosidases to be subsequently glucurinated
during transport through colonocytes in the intestinal wall toward
the circulatory system [21].

The modulation of the microbiota by the effect of anthocyanins
has been demonstrated; the results of some preliminary clinical
studies [22,23] have shown the gut effect of flavonoids, specifically
naringin and hesperidin. These natural compounds were investi-
gated in a controlled trial, which revealed their ability to selec-
tively stimulate the growth and activity of beneficial gut bacteria.
The study demonstrated that naringin and hesperidin act as gut
modulators by promoting the proliferation of specific strains,
enhancing the overall diversity and balance of the gut microbiota.
These findings suggest that flavonoids, such as naringin and hes-
peridin, may have potential therapeutic applications for improving
gut health and overall well-being. Notably, there is a lack of speci-
fic studies in the scientific literature that have focused on the mod-
ulation of intestinal microbiota due to the presence of flavonoids in
agro-industrial byproducts, such as those found in citrus fruits. It is
possible to increase its solubility and bioavailability by esterifica-
tion with short-chain fatty acids (acetate, propionate and laurate)
to generate metabolites capable of being a substrate in the colon,
which, when hydrolyzed, release short-chain fatty acids capable
of modulating the ratio of Bacteroides and Firmicutes, as well as
their beneficial effects in humans.

Short-chain fatty acids such as acetic and propionic acid can be
produced by the microbiota as secondary metabolites, while propi-
onic acid has important effects on human health, such as reducing
fatty acids in liver and plasma, has been shown to generate a sati-
ety effect reducing food intake and showing an anti-inflammatory
effect in the colon, as well as helping in the prevention of obesity
and diabetes, also improving insulin sensitivity [24]. Acetic acid
is the most abundant short-chain fatty acid in the colon produced
by the microbiota. This fatty acid has multiple metabolic activities
in the human body, ranging from increasing oxidative capacity in
the liver to activating receptors for blood pressure regulation
[25]. Recent studies have shown that acetic acid plays an important
role in the regulation of body weight and insulin sensitivity
through lipid metabolism. At present, efforts have been made to
supplement the human diet with products containing acetic acid
because its production by the microbiota is not sufficient [26]. Both
propionic and acetic acid can increase fatty acid oxidation, inhibit
fatty acid synthesis, increase heat production, and reduce fat stor-
age. These fatty acids can be consumed as dietary supplements;
however, their major production is through microbial fermenta-
tion, which in turn allows the regulation of the intestinal micro-
biota that promotes eubiosis [27].

Lauric acid is a medium-chain fatty acid with anticancer activity
that has been tested in vitro, in vivo and ex vivo studies, the results
of which concluded that this fatty acid has a high potential for use
in the pharmaceutical industry since it induces cell death of
cancerous cells in the colon [28], in addition to having antimicro-
bial activity [29] that can modulate the intestinal microbiota.
Therefore lauric acid is an attractive acyl donor for enzymatic
acylation.
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Fig. 1. Main routes of the absorption process of flavonoids.

Enzymatic acylation consists of the substitution of a hydroxyl
group of the aromatic ring by an acyl group, and the catalyst to
be used will depend on the compound to be acylated; the reaction
by elimination of OH groups reduces the antioxidant activity of fla-
vonoids; however, it makes them more soluble in polar media [30].
Lipase B from Candida antarctica (CALB) has been considered a
highly efficient and versatile enzyme in the enzymatic acylation
of flavonoids from some years, specially with long-chain acyl don-
nors [31]. However, the flavonoid acylation with short-chain
length is scarcely reported. Therefore, this work aims to function-
alize the structure of naringin by acylation with two short- and
one medium-chain length, as shown in Fig. 2, to improve its solu-
bility in water and in organic solvents and their gut modulation
properties.

2. Materials and methods
2.1. Materials and reagents

Naringin (98% purity), as well as vinyl (vinyl propionate, vinyl
laurate, vinyl acetate) and HPLC grade solvents (acetonitrile,
methanol, ethanol, and acetone), were acquired from Sigma-
Aldrich (Mexico). Glacial acetic acid was purchased from JT Baker
(Mexico), and immobilized lipase B from Candida antarctica, Novo-
zym® 435 (N435) was acquired from Novozymes through a local
broker.

2.2. Lipase activity

The lipase activity of N435 lipase before and after acylation was
evaluated to compare the loss of lipase activity. Lipase activity was
measured by the ability of the N435 enzyme to hydrolyze the pNPB
(p-Nitrophenyl butyrate) substrate and detect the release of the
product p-nitrophenol, according to the conditions mentioned by
Reyes-Reyes et al. [32].
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2.3. Enzymatic acylation

For enzymatic acylation, the protocols reviewed by Chebil et al.
[31] were used as a basis and further improved. Acylation of narin-
gin (8.61 mM, solubility limit in the solvent) was carried out in ace-
tonitrile as reaction solvent, at 50°C and 200 rpm with three
esterified fatty acids, vinyl acetate (C2), vinyl propionate (C3),
and vinyl laurate (C12). Regarding the molar ratio for the narin-
gin/acylating agent reaction, 3 different molar ratios were tested
(1:10, 1:5, 1:3). The experiments were carried out in triplicate
using a control without enzymes.

This is a factorial design that allows for the systematic investi-
gation of how different factors and their interactions influence the
outcome of the acylation process.

2.4. HPLC analysis

For the detection of naringin and naringin/acylating agent, a
specially developed isocratic HPLC method was generated using
HPLC and a diode array detector (PDA). In all cases, a Phenomenex®
Phenyl C-6 column was used at 40°C and read with a diode array
detector at a wavelength of 280 nm for phenolic compounds and
210 nm for fatty acids. The isocratic flow mobile phase was acidi-
fied methanol (0.1% acetic acid) and acidified Milli-Q water (0.1%
acetic acid) 60:40 at a flow rate of 1 mL/min during the determina-
tion of naringin acetate, 70:30 at a flow rate of 1 mL/min for pro-
pionate, and 90:10 at a flow rate of 0.7 mL/min for laurate.

The conversion was calculated by quantifying the consumption
of naringin. No further purification was performed, except enzyme
separation and solvent evaporation before analysis.

2.5. Product confirmation

2.5.1. FTIR spectrometry

After confirming the purity of the compounds derived from the
acylation of naringin and removing the enzyme, we proceeded to
concentrate the products using a rotary evaporator to remove the
solvent. Subsequently, 2 mg of each sample was taken to confirm
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Fig. 2. Naringin acylation.

the presence of the ester bond. For this purpose, FT-IR spectra were
obtained using a Bruker FTIR instrument with ATR in transmission
mode, covering a range of 400 to 4000 cm™'.

2.5.2. MS/MS spectrometry

The mass confirmation of acylated naringin was meticulously
carried out using a state-of-the-art Waters quadrupole instrument.
The mass spectra were meticulously recorded in the negative ion
mode, scanning an extensive range from 50 m/z to 2000 m/z. To
ensure utmost accuracy, crucial parameters such as the capillary
voltage (2.60 kV), cone voltage (40-44 V), source temperature
(149-150°C), desolvation temperature (344-350°C), cone gas flow
rate (50-97 L/h), and desolvation gas flow rate (650 L/h) were
scrupulously controlled. These finely tuned settings played a piv-
otal role in facilitating the precise identification and comprehen-
sive characterization of acylated naringin and its related
compounds. Mass confirmation of acylated naringin was per-
formed in a Waters quadrupole.

2.6. Solubility

The solubility assessment played a pivotal role in this investiga-
tion, yielding significant insights into the solubility profiles of both
naringin and its acylated derivatives. The preparation of supersat-
urated solutions was meticulously executed across a spectrum of
solvents, including water, acetonitrile, acetone, ethanol, and
methanol. To generate these solutions, precisely measured quanti-
ties of naringin (60 mg) and acylated compounds (450 mg) were
introduced into 1 mL of each respective solvent. Following a
sequence of sonication and sedimentation, the resultant super-
natants were systematically collected, subjected to filtration, and
appropriately diluted in the mobile phase for subsequent HPLC
analysis, following established methodologies. This dataset
assumes a paramount role in comprehending the solubility
dynamics of these compounds across an array of solvents, and its
implications extend to diverse domains including formulation
development, pharmacokinetics, and a multitude of industrial
applications.
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This selection of solvents thoughtfully encompasses a diverse
range of polarities and intrinsic properties commonly encountered
in laboratory research as well as industrial settings. The inherent
variance in solvent polarity significantly influences the solubility
characteristics and intricate interactions of the tested compounds
within each solvent medium.

2.7. LogP

We calculated the theoretical LogP values for each naringin acy-
late using the ACD/LogP™ computational program from ACD/Labs®.
This program relies on a classical algorithm supported by over
12,000 experimental LogP values. It utilizes the principle of isolat-
ing carbons to perform the calculations. The structures of the acy-
lates were drawn using ChemSketch™ and entered into the
program in SK2 format. The LogP value is a measure indicating a
compound’s ability to dissolve in different media, specifically, its
partitioning between an organic phase and an aqueous phase. A
positive LogP value indicates a greater affinity of the compound
for the organic phase (lipophilic), while a negative value indicates
a greater affinity for the aqueous phase (hydrophilic) [30].

2.8. Antioxidant activity

2.8.1. DPPH

DPPH for antioxidant activity estimation was performed
according to Milisavljevic et al. [33]. Methanol was used as the sol-
vent and as a blank, and Trolox was used as a positive control.

2.8.2. p-Carotene-linoleic acid method

The B-carotene method from Loucif et al. [34] was used to
determine the antioxidant activity of naringin and its acylated
products. Trolox was used as a reference.

2.9. Oxidative stability

To assess the antioxidant effect of naringin and its acylated
products on olive oil, the oxidative stability was obtained accord-
ing to the Rancimat method [35], using the 893 Professional Bio-
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diesel Rancimat. A total of 7.5 g of each sample was placed in a test
tube, bubbling air at 10 L/h and heating the tube at 110°C. The con-
ductivity was measured, and the oxidation time was expressed in
minutes.

2.10. Statistical analysis

Statistical analysis of three independent experiments was car-
ried out by analysis of variance tests using Excel software version
16.64 of Microsoft 365.

3. Results
3.1. Acylation

Three activated acyl donors, acetate (C2), propionate (C3), and
laurate (C12) vinyl esters, were used. The optimized reaction con-
ditions were as follows: 1.6 g/L of the enzyme was used at 50°C
with 200 rpm agitation in an incubator/stirrer Enviro-genie® for
48 h, and the reaction solvent was acetonitrile. Kinetics was fol-
lowed by an isocratic HPLC method developed for this work (Sec-
tion 2.3), and confirmation of product identity was obtained by
FTIR and MS/MS. Only a main monoacylated product was observed
in HPLC analysis (Fig. S1, Fig. S2, Fig. S3), which was also corrobo-
rated by FTIR (Fig. S4, Fig. S5, Fig. S6), where the stretches of OH,
C=C, and C=0 functional groups are observed).

Mass spectrometry confirmed what was seen by HPLC and FTIR.
In S7, S8, S9, it is possible to observe the molecular ions of naringin
and their acylated products with acetate (Fig. S7, m/z 621.1), pro-
pionate (Fig. S8, m/z 635.6), and laurate (Fig. S9, m/z 761.5). The
mass of fragments of naringin were also observed, for instance,
at m/z 271.1, and two rearrangements of m/z 150.9 and 459.3, as
well as some adducts. These fragmentations provide a fingerprint
and confirmation that the molecule is indeed an acylation of narin-
gin with the acylates [36]. Given the high conversion obtained
(Fig. 2, Fig. 3, Fig. 4), no further purification was performed, except
enzyme separation and solvent evaporation before analysis.

For naringin acetate, we found that the acylation reaction at the
three molar ratios reached a maximum of 99.3% conversion in 24 h,
while at 48 h, it reached 100% conversion (Fig. 3). However, the
reaction rate was faster for the 1:5 molar ratio, although at 48 h,
there was no significant difference in conversion between them
when performing an ANOVA test, where the p value was above
0.05, being 0.07, 0.8, and 0.1, respectively. The same was true for
naringin propionate and laurate with the ANOVA results, where
the p value was above 0.05 for all molar ratios. The only difference
was for laurate, where the kinetics were faster for the 1:3 molar
ratio (Fig. 4, Fig. 5), and for laurate, only 90% conversion was
reached at 48 h (further reaction time did not increase the
conversion).

3.2. Lipase activity

The initial lipase activity of the sample was 2058 U/g, while the
lipase activity of the recovered enzyme was 1974 U/g. This indi-
cates that the recovered N435 lipase activity decreased by approx-
imately 4% compared to the initial lipase activity.

3.3. Solubility

The solubility of naringin before and after acylation was deter-
mined by HPLC and is shown in Table 1, Table 2 and Table 3. There
was a significant difference in all solubility tests (P < 0.05).

It is evident that the acylated compounds (naringin acetate, nar-
ingin propionate, and naringin laurate) exhibited significantly
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Fig. 3. Conversion of naringin in naringin acetate synthesis at different times and
acyl donor ratios (naringin: acyl donor).
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Fig. 4. Conversion of naringin in naringin propionate synthesis at different times
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Fig. 5. Conversion of naringin in naringin laurate synthesis at different times and
acyl donor ratios (naringin: acyl donor).

higher solubility compared to naringin alone. For example, in
Table 1, the solubility of naringin acetate was approximately 4
times greater than that of naringin in water, and the enhancement
factors were even more pronounced in other solvents. Similarly,
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Table 1
Solubility in mg/mL of naringin vs. naringin acetate. In addition, its solubility
enhancement factor.

Solvent Naringin Naringin Solubility enhancement
acetate factor

Water 2.94 11.9 4

Ethanol 29.4 61.6 2

Methanol 3.90 53.8 14

Acetonitrile 4.94 55.0 11

Acetone 493 38.6 8

Table 2

Solubility in mg/mL of naringin vs. naringin propionate. In addition, its solubility
enhancement factor.

Solvent Naringin Naringin Solubility enhancement
propionate factor

Water 2.94 23 1

Ethanol 294 284.9 10

Methanol 3.90 224.7 58

Acetonitrile 4.94 330.6 67

Acetone 493 236.7 48

Table 3

Solubility in mg/mL of naringin vs. naringin laurate. In addition, its solubility
enhancement factor.

Solvent Naringin Naringin Solubility enhancement
laurate factor

Water 2.94 1.0 1

Ethanol 29.4 3329 11

Methanol 3.90 391.8 100

Acetonitrile 4.94 109.0 22

Acetone 493 404.8 82

Table 2 and Table 3 show substantial increases in solubility for nar-
ingin propionate and naringin laurate in various solvents.

Enzymatic acylation of naringin with short- and medium-chain
fatty acids induces structural changes that enhance its solubility.
This modification increases the molecule’s lipophilicity, making it
more compatible with organic solvents and fats. Simultaneously,
it reduces the number of hydroxyl groups, diminishing hydrogen
bonding tendencies and boosting water solubility. The addition
of the fatty acid chain also alters the compound’s molecular
weight, affecting its solubility in various solvents. Moreover, the
fatty acid chains can interact effectively with other molecules
and solvents, promoting solubility in different environments.
These structural alterations, corroborated by FTIR analyses, signif-
icantly enhance naringin’s solubility, holding promise for applica-
tions in pharmacology and the food industry.

3.4. LogP

Regarding the LogP values in Table 4, the acylated compounds
(naringin acetate, naringin propionate, and naringin laurate) were
generally higher compared to naringin alone. This indicates that
the acylated compounds have a greater tendency to dissolve in
organic solvents and exhibit enhanced lipophilicity.

3.5. Antioxidant activity

3.5.1. DPPH radical scavenging

The antioxidant activity measured by DPPH showed a weaker
absorbance when DPPH met the flavonoids, and the naringin abil-
ity of free-radical scavenging was approximately 80% of the Trolox
equivalent and maintained after acylation with a minimum
decrease (Table 5).
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Table 4
LogP value of naringin vs. acylated naringin.

Naringin Naringin acetate  Naringin propionate Naringin laurate
3.79+089 3.98+0.92 4.51 +0.92 9.30 + 0.92
Table 5

Free radical scavenging decreased the antioxidant activity of naringin derivatives
relative to naringin.

Naringin acetate
Decrease rate

0.015% + 3.8

Naringin propionate
Decrease rate

3.63% £ 2.71

Naringin laurate
Decrease rate

4.97% + 2.8
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Fig. 6. Antioxidant activity for the p-Carotene-linoleic acid method.

3.5.2. p-Carotene-linoleic acid method

The results for the p-carotene method (Fig. 6) showed an
increased antioxidant for acylated naringin, being laurate the high-
est. The degradation rate was calculated with [Equation 1], and the
antioxidant activity rate was calculated with [Equation 2].

_In(A - A)
t

DR 100

(1)
where AQ: initial absorbance; Af: Final absorbance; and t: time.

DRControl — DRSample
DRControl

%AA = % 100 2)

3.6. Oxidative stability

As shown in Table 6, the addition of flavonoids to the olive oil
provided a protective action against its oxidation, increasing the
time at the induction point from 2.6 min to 2.9 min in the naringin
laurate sample.

4. Discussion

Lipases play a crucial role in various industries because they
exhibit remarkable stability when exposed to organic solvents.
They possess a diverse range of substrates on which they can act,
demonstrating selectivity in their enzymatic reactions. Addition-
ally, lipases possess the advantageous ability to catalyze reactions
without requiring costly cofactors. Furthermore, they can be read-
ily produced and remain highly active even under gentle reaction
conditions [30]. One notable application is their crucial role in
the enzymatic acylation of flavonoids. Lipases, with their ability
to efficiently catalyze the acylation process, contribute signifi-
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Table 6

Electronic Journal of Biotechnology 68 (2024) 47-56

Oxidative stability rate of olive oil (control) and olive oil plus flavonoids measured by the Rancimat method.

Control Naringin Naringin acetate Naringin propionate Naringin laurate
induction point in min increase rate increase rate increase rate increase rate
2.65+0.03 5% + 0.05 5% +0.03 5% + 0.05 10% + 0.08

cantly to the production of acylated flavonoids with improved
properties; the reaction yield is influenced by various factors,
including the enzyme, substrates, molar ratio, solvent, and reaction
conditions. In this study, we utilized Candida antarctica lipase B,
specifically in its commercially available immobilized form, from
the brand Novozym® (N435), which is renowned for its exceptional
selectivity and catalytic efficiency. N435 exhibits a remarkable
ability to selectively recognize and interact with specific sub-
strates, allowing for precise enzymatic modifications. This selectiv-
ity is attributed to the unique architecture of N435’s catalytic site,
which enables it to accommodate a wide range of substrates with
varying structures. The catalytic site of N435 plays a crucial role in
facilitating the enzymatic reactions, providing a favorable environ-
ment for the substrate to undergo acylation or other modifications
[37]. By harnessing N435’s selectivity efficacy, we successfully
achieved the desired modifications of nutraceutical substrates in
this study, showcasing the remarkable capabilities of N435 as a
versatile biocatalyst for phenolic acylation [30,38]. Using a solvent
offers numerous advantages due to its ability to buffer changes in
the initial substrate composition, and maintain consistent physical
properties of the reaction medium, particularly by ensuring a
nearly constant low viscosity, however, the solvent impacts ther-
modynamically in reaction performances [39]. Acetonitrile was
chosen as the reaction solvent based on our previous expertise in
enzymatic modification of flavonoids [40] demonstrating its suit-
ability by achieving conversions of above 90%. The selection of an
appropriate solvent is pivotal for the success of chemical reactions,
especially when working with enzymes. Acetonitrile has been
widely employed in enzymatic modification of natural compounds
due to its favorable properties and our prior experience in flavo-
noid modification using enzymes enabled us to assess the suitabil-
ity of acetonitrile as the reaction solvent in this study [40]. One key
advantage of acetonitrile is its capability to maintain a consistently
low viscosity throughout the reaction process. This is particularly
important for enzymatic reactions, as high viscosity can adversely
affect enzymatic activity and, consequently, the efficiency of the
modification. By ensuring a constant low viscosity, acetonitrile
provides a favorable environment for enzymatic activity, poten-
tially resulting in higher conversions of the target substrates
(Fig. 3, Fig. 4, Fig. 5, Table 7). While not classified as a typical buffer
solution, acetonitrile exhibits a buffering capacity analogous to
that of conventional buffers, preserving the stability of a reaction
mixture. This 'robust buffering capacity’ of acetonitrile signifi-
cantly contributes to the stability and efficiency of enzymatic reac-
tions. By maintaining a consistent pH and composition within the
reaction medium, acetonitrile establishes an optimal environment
for enzymatic activities. Consequently, this stability not only
enhances the overall effectiveness of enzymatic processes but also
ensures the reproducibility of results, a fundamental requirement
in scientific experimentation. Another advantage of acetonitrile is
its ability to facilitate water partitioning. Water can either be a
byproduct or a critical component in many enzymatic reactions.
Acetonitrile aids in improving the separation of the aqueous and
organic phases, which can be beneficial for the recovery and purifi-
cation of reaction products. Our previous results in enzymatic
modification of flavonoids using acetonitrile as the solvent support
its suitability in this study. We achieved conversions of up to 90%
using this solvent (Table 7), demonstrating its effectiveness and
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compatibility with the enzymes employed in the modification pro-
cess. These positive outcomes validate our choice of acetonitrile as
the reaction solvent in this study.

The molar ratio of substrates plays a crucial role and is influ-
enced by the equilibrium constant and the reaction medium, as
observed in previous lipase-catalyzed reactions [31,39]. Hence,
we investigated molar ratios of 1:3, 1:5, and 1:10 for the three acyl
donors, and the results were found to be dependent on both the
molar ratio and the acyl donor’s chain length, as illustrated in Fig
3, Fig. 4, and Fig. 5.

When comparing our reaction conditions to those of other stud-
ies (Table 7), where enzyme concentrations ranging from 3 to 50 g/
L were used, we achieved higher conversions with a significantly
lower enzyme concentration of only 1.6 g/L. Moreover, our reac-
tions exhibited faster kinetics, with maximum conversion reached
within 48 h, while other studies required significantly longer reac-
tion times of 96 to 120 h. The exceptional efficiency of our enzy-
matic acylation can be attributed to the unique characteristics of
N435, specifically its selective transesterification capability with
specific fatty acid vinyl esters [41]. N435’s ability to selectively tar-
get and modify the flavonoid structure enhances its efficiency in
the acylation process. Additionally, the robust support of N435
ensures its stability in organic solvents, enabling the enzyme to
be reused without a significant loss of activity, consistently achiev-
ing conversions above 90% (Fig 3, Fig. 4, Fig. 5) demonstrates the
remarkable efficiency of this biocatalyst in our acylation reactions.
The formation of monoacyl products in all three acylation reactions
supports previous reports that N435 acylated position 6”-0- of the
sugar moiety of flavonoids [42,43]. This finding aligns with our
study, where the confirmation was obtained through the analysis
of NMR and mass spectra, clearly exhibiting the signals of H-6a
and H-6b, just as mentioned in the existing literature (Fig. S7,
Fig. S8, Fig. S9, Fig. S10, Fig. S11, Fig. S12).

The chain length and structure of the acyl donor directly impact
enzymatic synthesis [37]. The acylation of naringin with acetate
and propionate (both short-chain donors) achieved complete con-
version within 48 h, whereas similar conditions in other studies
required 120 h to achieve substrate conversions ranging from
40% to 60%. Interestingly, when comparing our results of naringin
laurate acylation with previous studies [44,45], we obtained higher
conversions at similar reaction times while using a lower enzyme
concentration. However, the acylation of naringin with laurate
exhibited lower conversion and longer reaction time, suggesting
that mass transfer limitations may arise when working with acyl
donors of increased chain length. Furthermore, the slightly lower
conversion observed with laurate indicates that a more hydropho-
bic solvent may be more suitable for longer-chain acyl donors, as in
the case of acetone where Sun et al. [46] achieved 93% of
conversion.

Several authors have synthesized naringin esters with various
fatty acids of different chain lengths. However, to the best knowl-
edge of the authors, acylation of naringin with vinyl propionate has
not been conducted. In this study, the acylation reactions with
vinyl propionate were performed, achieving conversions of 99%
and obtaining a monoacylated product.

The impact of acyl chain length on the solubility of naringin was
evident in our study. As the length of the acyl donor chain
increased, the solubility of naringin showed improvement across
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Table 7

Summary of similar reaction conditions used in various studies to synthesize naringin esters using N435 as biocatalyst.
Acil donor Molar ratio [Enzyme] Solvent Time T Conversion Reference
Vinyl laurate 1:10 17 g/L Acetonitrile 8 h 50°C 58% [44]
Lauric acid 1:10 10 g/L Acetone 96 h 50°C 71% [45]
Lauric acid 1:5 12 g/L Acetone 72 h 45°C 93% [46]
Vinyl acetate 1:3 1.6 g/L Acetonitrile 48 h 50°C 100% This study
Vinyl propionate 1:3 1.6 g/L Acetonitrile 48 h 50°C 99% This study
Vinyl laurate 1:3 1.6 g/L Acetonitrile 48 h 50°C 90% This study

different solvents. For instance, naringin acetate significantly
enhanced its solubility in water, exhibiting a 4-fold increase com-
pared to the original solubility of naringin. On the other hand, nar-
ingin laurate demonstrated an impressive 82-fold increase in
solubility in acetone, a solvent known for its ability to dissolve fats.
Naringin propionate displayed intermediate solubility characteris-
tics, showing increased solubility in organic solvents while remain-
ing relatively unchanged in water when compared to the original
solubility of naringin.

Previous studies involving enzymatic acylation with long-chain
fatty acids have also reported similar influences on the solubility of
naringin, where the modified molecule with long-chain fatty acids
exhibited increased lipophilicity [47].

In addition, the altered partitioning behavior (LogP) observed
between the organic and aqueous phases indicates a change in
the affinity of the compounds for different environments. This
characteristic has implications for their distribution and localiza-
tion within biological systems. In pharmaceutical applications,
the ability of these acylated compounds to selectively partition
into specific cellular compartments or target tissues can signifi-
cantly influence their therapeutic action. This altered partitioning
behavior may also influence their interactions with other compo-
nents, such as proteins or lipids, within the biological environment,
further modulating their biological activities.

Regarding antioxidant activity, some authors have reported that
the antioxidant activity decreases after acylation [44,48], this was
also confirmed in our study, as we observed a reduction in antiox-
idant capacity by 1% to 5% during DPPH measurements. However,
it is important to note that the antioxidant activity can be recov-
ered in vivo through hydrolysis in the digestive system. This pro-
cess releases the hydroxyl group at the site of acylation, thus
restoring the antioxidant activity. This recovery allows for the
potential utilization of this flavonoid in both the cosmetic and food
industries, such as for the preservation of fatty foods. A drop in the
antioxidant capacity in aqueous media for the laurate derivative
was also expected since it is less soluble in polar media (Table 5).

The results for the p-carotene method (Fig. 6) showed an
increased antioxidant for acylated naringin, presenting laurate
with the highest activity. This was expected because it is a more
hydrophobic derivative and therefore more soluble in lipids.
Jasinska et al. [49] also reported for anthocyanins that in aqueous
media, the %¥AA decreases with acylation, while in hydrophobic
media, the %AA increases with the chain length of the acyl donor.
This was also corroborated in the oxidative stability test, in which
both naringin and its esters showed lipid protective activity in the
olive oil that was used as a control (Table 6), with naringin laurate
(with the longest chain used in this study) being the naringin ester
with greater lipid protection. This result makes these compounds
attractive to the pharmaceutical, food and cosmetic industries,
having better solubility and improving their lipid antioxidant
activity through enzymatic acylation [43,50].

The potential modulatory effect of short- and medium-chain
fatty acids has been pointed out [51]. As these fatty acids are pre-
sent in our naringin acylated derivatives, they could also con-
tribute to this modulation. Indeed, recent studies have provided

evidence of the modulatory effect of phenolic compounds, such
as naringin, on the microbiota, although the mechanisms involved
are not yet fully understood. Two main modes of action have been
identified: firstly, certain microorganisms within the microbiota
possess the ability to metabolize these phenolic compounds, and
secondly, phenolic compounds can exhibit antimicrobial activity
[9].

Although further investigation is warranted to fully elucidate
the mechanisms underlying the modulation by phenolic com-
pounds, the antimicrobial properties observed in some studies sug-
gest that these compounds may help in maintaining a healthy gut
environment by controlling the growth of potentially harmful
microorganisms [52]. Moreover, the ability of certain gut microor-
ganisms to metabolize phenolic compounds implies a mutual rela-
tionship between the microbiota and dietary compounds,
potentially leading to a dynamic interplay that influences gut
microbial diversity and function [53].

As our understanding of the gut microbiota’s significance con-
tinues to evolve, harnessing the modulatory potential of dietary
components like short- and medium-chain fatty acids and phenolic
compounds may emerge as a valuable strategy for maintaining gut
health and overall well-being.

5. Conclusions

Based on the results obtained in this study, it can be concluded
that the reaction conditions for acylating naringin with acetate,
propionate, and laurate resulted in a highly efficient conversion,
surpassing 90% and demonstrating improved speed compared to
previous studies under similar conditions. Notably, this enhanced
efficiency is accompanied by a significant reduction in enzyme
usage, which is particularly advantageous considering the high
cost of the enzyme involved (N435). Achieving a lower enzyme
consumption is a highly favorable outcome of this research.

Furthermore, the acylation of naringin led to enhanced solubil-
ity, thereby addressing a common limitation associated with its
non-acylated form. Importantly, the acylated compounds exhibited
preserved antioxidant activity in polar media and even showed
increased activity in lipidic media. These enhancements hold con-
siderable potential for expanding the application of naringin in the
food and cosmetic industries.

In future studies, we aim to explore the impact of acylated nar-
ingin compounds on the modulation of the digestive microbiota.
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