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Background: The high disability rate of osteoarthritis (OA), a joint disease with an insidious onset and
widespread effects, places a heavy financial burden on patients, families, and society. Traditional diagnos-
tic approaches, including radiology and physical examination, cannot achieve early-stage screening of OA
and thus, miss early intervention for patients. Therefore, the need of biomarkers for the early diagnosis of
OA is crucial.
Results: A total of 390 differentially expressed genes (DEGs) were identified from the training set,
and 1077 key module genes were found by constructing a weighted gene co-expression network,
and 161 key genes were obtained as a result. Four diagnostic marker genes highly associated with
OA were screened for key genes using machine learning algorithms, and the resulting nomogram
model showed excellent predictive power and clinical value. After further background studies,
immune infiltration and functional enrichment analysis, we found that FKBP5 may play an important
role in the prognosis and immune infiltration of multiple cancers, and this hypothesis was verified
by pan-cancer analysis.
Conclusions: We screened four diagnostic marker genes (FKBP5, EPYC, KLF9 and PDZRN4) that are highly
associated with OA. And this led to a diagnostic model, which was assessed to have good predictive
power and clinical value. FKBP5 may be a potential intervention target for human diseases such as
osteoarthritis and tumors.
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1. Introduction

Osteoarthritis (OA) is a common joint disease characterized by
changes in bone structure and loss of articular cartilage. The patho-
logical changes mainly include degeneration of the articular carti-
lage, subchondral osteophytes, synovial inflammation, and
hypertrophy of the meniscus and joint capsule. Previously, OA
was referred to as a degenerative joint disease, but growing
research suggests that this is an inaccurate term because OA is
not only due to wear and tear of the joint but also due to many
inflammatory mediators that cause tissue remodeling within the
joint [1]. Risk factors of OA can be divided into two categories: sys-
temic factors (age, sex, obesity, genetics, and diet) and factors asso-
ciated with OA progression due to the joint itself (injury, poor joint
alignment, and abnormal joint loading) [2]. With an aging and
increasingly obese population, OA is becoming a growing personal
and societal health burden. Approximately 250 million people are
thought to be affected by this illness worldwide, and in this con-
text, most patients do not receive appropriate management and
treatment [3]. The current diagnostic criteria for OA are based on
clinical symptoms (pain, transient pain <30 min, and swelling),
physical examination (popping, restricted movement, joint com-
pression, and osteophytes), and imaging results of the bone and
joint, which have limitations and lags; irreversible damage has
already occurred by the time many diagnoses are made. Damage
to joint structures detected by X-ray and magnetic resonance
imaging (MRI) precedes the development of pain [4], and the
advent of MRI has led to the inclusion of statements of nonchon-
dral tissue of joints in many patients with OA [5]. However, MRI
is not used for the early detection of OA; therefore, there is an
urgent need to identify more sensitive modalities capable of early
diagnosis.

In the development of OA, metabolic changes in joints, cartilage,
and synovium precede morphological changes in joint structures.
Biomarkers that reflect metabolic changes in joints, cartilage, and
synovium are gaining attention, including collagen and non-
collagen biomarkers, and inflammatory and anti-inflammatory
biomarkers, which are expressed in biological fluids, such as
serum, synovial fluid, and urine [6]. The expression levels of these
markers can directly reflect the pathophysiological changes in OA
and can be used for disease assessment and treatment efficacy
determination.

Immune mechanisms are key drivers of OA progression and
have become a hot research topic in early diagnostic markers of
OA in recent years [7]. Among them, macrophages are the most
important cells in the synovial tissue [6], producing glycosylases,
matrix metalloproteinases, and other destructive mediators that
activate innate immunity in OA, suggesting that macrophages play
an important role in the pathology of OA [8,9]. Macrophages and
other immune cells can activate and regulate the complement sys-
tem [10], which, as part of inflammation and the immune system,
promote the immune response by enhancing antibodies and
immune cells against antigens [10], responsible for catabolism
and anabolism in the synovial joints. Furthermore, growing evi-
dence indicates that T helper (Th) cells play a key role in the patho-
genesis of OA [11], particularly in the inflammatory response of
joints triggered by synovial infiltration; however, the clinical rele-
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vance of synovial and serum Th infiltration remains unclear [12].
Previous bioinformatics studies have demonstrated how immune
cell infiltration and immunological-related pathways contribute
to the development of OA [13,14]. These results highlight the cru-
cial role of immunological processes in OA; however, the funda-
mental immunological molecular pathways remain poorly
understood.

Gene coexpression networks can synthesize multiple levels and
functional units in biological systems while studying their interac-
tions, providing a more systematic and systemic research para-
digm for biological studies [15]. In particular, the use of
weighted gene coexpression network analysis (WGCNA) on high-
throughput microarray data has produced significant results in
the genetic analysis of numerous species, including humans and
mice. Currently, machine-learning algorithms have been applied
to many real-world bioinformatics problems, and many effective
learning algorithms have been developed to identify specific
disease-causing genes based on gene chip sequences [16].

With the advent of new technologies in biomedicine, there has
been an exponential increase in high-throughput disease-related
data. However, accurate prediction of disease progression is one
of the most challenging tasks in the medical community.
Machine-learning algorithms have become an important analytical
tool in the medical field because of their ability to identify the key
factors among a vast amount of data. Machine learning applica-
tions in the medical field include medical image analysis, disease
prediction and genomics [17,18]. These applications require pro-
cessing large amounts of complex data, including medical images,
genomic data, patient history data, and more. Machine learning
can help doctors better understand and analyze these data to
improve disease prediction and treatment accuracy and efficiency.
Among them, medical image analysis can help doctors automati-
cally detect and diagnose diseases; disease prediction can be based
on a large amount of patient data to predict the occurrence and
progression of diseases and analyze the risk of patients; and geno-
mics can be used to identify genes and genetic variants associated
with diseases. Different machine learning algorithms are applica-
ble to different data types and problem types, so a medical prob-
lem may require multiple machine learning algorithms to solve.
Therefore, we used the three most widely used machine-learning
algorithms in the biomedical field: least absolute shrinkage and
selection operator (LASSO), random forest, and support vector
machine recursive feature elimination (SVM-RFE). The LASSO algo-
rithm has a strong feature selection capability, which can select
important features and suppress the influence of irrelevant fea-
tures to improve the accuracy and interpretability of the model.
The RF algorithm has good generalization performance, can handle
a large number of features, and can handle nonlinear and high-
dimensional datasets. The SVM-RFE algorithm obtains the best
subset of features by gradually eliminating unimportant features.
The SVM-RFE algorithm improves the robustness and generaliza-
tion of the model and can be applied to high-dimensional and non-
linear datasets. The three machine learning algorithms have their
advantages and applications in specific problems and scenarios,
and the combined use of the three algorithms can improve the
accuracy and generalization ability of the model. We used microar-
ray data from normal people and patients with OA to screen for
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signature genes associated with the early diagnosis of OA and to
lay the foundation for identifying potential biomarkers.
2. Materials and Methods

2.1. Data download and preprocessing

Gene expression profiles for GSE55235 and GSE12021 [19,20]
were downloaded from the gene expression omnibus (GEO), and
data for 39 human groups, including the normal group (n = 19)
and the OA group (n = 20), were available. Gene expression profiles
for GSE55457 [21] were also downloaded from GEO. Twenty sam-
ples of data comprising the human normal group (n = 10) and
human OA group (n = 10) were used for subsequent model valida-
tion. Owing to the uniformity of the specimen source, study design,
and platform source (GPL96) between the GSE55235 and
GSE12021 datasets, the expression profiles of these two datasets
were merged. The combat function of the sva package in R was
used to eliminate the batch effect [22], where the probe name of
each gene was changed to its symbol name, and the probes corre-
sponding to multiple gene symbols were removed. The cancer
dataset was derived from human tissue sequencing data from
The Cancer Genome Atlas (TCGA); tumor cell line sequencing data
were derived from the Cancer Cell Line Encyclopedia (CCLE) of the
Broad Institute; and the Genotype Tissue Expression (GTEx) project
was used to collect data from normal tissues. We used the XENA
(https://xenabrowser.net) [23] database to obtain bioinformatic
data including The Cancer Genome Atlas (TCGA) and Genotype-
Tissue Expression (GTEx), and performed a pan-cancer bioinfor-
matic analysis.

2.2. Differential expression analysis

The limma package in R was used to analyze the combined
expression matrix [24], and the results of the differentially
expressed genes (DEGs) were displayed in a volcano plot. DEGs
were screened in osteoarthritic and normal samples, and genes
with |fold change (FC)| < 0.5 and multiple test correction values
(q-values) <0.05 were considered to be differentially expressed in
OA.

2.3. Weighted Gene Coexpression Network Analysis (WGCNA)

The combined GSE55235 and GSE12021 datasets were used to
uncover strongly associated gene coexpression modules using the
WGCNA algorithm. The distance between each gene was first cal-
culated using the Pearson correlation coefficient, and then, a
weighted gene coexpression network was constructed using the
WGCNA package in R [25,26] with a soft threshold set to 6. To
investigate the modules highly correlated with OA, we calculated
the correlation coefficients between the module feature genes
and OA. The higher the correlation coefficient, the more strongly
the modules and OA were correlated. We then selected the two
gene modules with the largest and smallest correlation coeffi-
cients, selected all the genes within them, and intersected with
DEGs. The intersected genes were used for subsequent feature gene
screening. We measured the importance of genes in the module by
calculating the gene significance (GS) and module membership
(MM).

2.4. Functional enrichment analysis

Functional analyses, including gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses, were per-
formed using the clusterProfiler package [27]. Significant enrich-
26
ment in this gene collection was indicated by an adjusted p-
value <0.05.

2.5. Selection of feature genes

Three machine-learning algorithms were used to screen the fea-
ture genes. LASSO is a dimensionality reduction analysis method
for performing gene selection [28] that compresses the coefficients
of the target genes and makes certain regression coefficients zero,
leading to the screening of feature genes. In this study, the glmnet
package was used to determine the penalty parameter lambda by
10 � cross-verification (10-fold cross-verification) [29], and to
determine the optimal lambda value corresponding to the mini-
mum value of the cross-verification error mean. Random forest
[30] is an algorithm that integrates multiple decision trees through
an integrated-learning approach. It uses the R package Ran-
domForest to construct a random forest classifier and predict dis-
ease classification by feature genes; the top 30 genes in
importance are considered as feature genes. SVM-RFE [31] is a
sequence backward selection algorithm. The model was trained
on samples, and after ranking each feature according to its score,
the component with the lowest rating was eliminated. The model
was then retrained with the remaining features in preparation
for the subsequent iteration, and finally, the correct number of fea-
tures was selected. To identify the most powerful genes associated
with OA diagnosis, appropriate feature genes were selected using
the SVM-RFE method. The diagnostic effect was assessed using
the receiver operating characteristic (ROC) curve and area under
the curve (AUC). The combined GSE55235 and GSE12021 gene sets
were used as the training set, and the GSE55457 and GSE12807
gene sets were used as the validation set.

2.6. Gene set enrichment analysis (GSEA)

Based on the median expression levels of the four feature genes,
OA tissues were divided into two groups using GSEA, and the gene
sets within the two groups were enriched for certain gene func-
tions. The ‘‘C2.KEGG pathway gene set” was chosen as the refer-
ence gene collection. To obtain standardized enrichment scores
for each analysis, 1000 permutation tests were performed. Statisti-
cal significance was defined as p < 0.05.

2.7. ROC curve plotting

The ‘‘pROC” package in R was applied to draw ROC curves for
four disease signature genes, and the diagnostic performance of
the disease signature genes was determined based on the AUC
values.

2.8. Establishment of a nomogram

Feature genes were merged using the rms package to create the
nomogram. Calibration curves were used to assess nomogram
accuracy. The clinical utility of Norman plots was assessed using
decision curves.

2.9. Single sample GSEA (ssGSEA)

Using 45 gene sets collected from the molecular signatures
database [32] as the reference set, ssGSEA was performed using
the gene set variation analysis (GSVA) R package [33] to obtain
GSVA scores for each gene set. The difference in GSVA scores for
each gene set between the osteoarthritic and normal tissues was
compared using the limma package, with GSVA values indicating
the absolute enrichment of each gene set. We calculated the spear-
man’s correlation coefficients between GSVA scores and gene
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expression using R and applied the ‘‘ggplot2” package to demon-
strate them.
2.10. Prediction and signature gene correlation of immune infiltrating
cells

The percentage of tumor-infiltrating immune-related cells in
each sample was predicted using the CIBERSORT algorithm. Differ-
ential analysis of immune cells was performed using the R soft-
ware packages ‘‘corrplot” and ‘‘vioplot.” Correlations between
immune cells and diagnostic features were analyzed using the
spearman’s test, and the results were visualized using R software.
We used data from 39 samples from GSE55235 and GSE12021 in
performing immune infiltrating cell prediction and signature gene
correlation analysis, containing 19 samples from the normal group
and 20 samples from the osteoarthritis group.
2.11. Relationship between survival analysis and clinical stage

The GEPIA database is an online platform that contains RNA
sequencing data for tumor and normal tissues from the TCGA
and GTEx datasets [34]. Using the survival plot module, the data-
base was used to investigate the association between FKBP5
expression and tumor prognosis.
2.12. Cox regression analysis and survival analysis

The normalized TCGA dataset, including expression and prog-
nostic information, was downloaded from the UCSC (https://
xenabrowser.net/) database. The gene expression data for FKBP5
were further extracted and log2(x+1) was transformed to build a
Cox proportional hazards regression model [35] to examine the
association between gene expression and prognosis in each tumor
(including parameters of overall patient survival and disease-free
survival). Patients were divided into high- and low-expression
groups according to the best cut-off values, and the prognostic dif-
ferences between the two groups were analyzed using the survfit
function of the R software survival package. The significance of
Fig. 1. Data processing of DEGs. (A) Heatmap of normal group and OA group. (B) The G
shown in a volcano plot. The 186 genes that were down-regulated (light blue dots) and
have undergone no substantial alterations.
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the differences was assessed using the log-rank test method, and
the p-value <0.05 was considered statistically significant.

2.13. Multiple algorithms for immunoinfiltration analysis

We integrated five algorithms, TIMER [36], xCell [37], EPIC [38],
MCPcounter [39], and quanTIseq [40], to calculate the immune cell
infiltration scores for several major immune cell types to deter-
mine whether there is a link between FKBP5 expression and
immune infiltration.
3. Results

3.1. Data preprocessing and screening of DEGs

In this study, the GSE55235 and GSE12021 datasets were batch-
corrected using the sva package and the DEGs of the combined
datasets were identified using the limma package. A total of 390
DEGs were screened out, including 184 upregulated genes and
206 downregulated genes, according to the critical criteria of |
log2FC|>1 and p<0.05. The DEGs of the combined dataset are dis-
played with a volcano plot in Fig. 1B; the top 30 upregulated and
downregulated DEGs are displayed on the heat map in Fig. 1A.

3.2. Building coexpression modules through WGCNA

The expression matrix of the 39 patients in the combined data-
set was read in R. weighted gene coexpression analysis was used
for the two groups of samples, and the samples were clustered
using the class average method (average) in the hclust function.
The clustering results are shown i n Fig. 2A. The disease grouping
data of the patients were imported, and the relationship between
the sample grouping and the sample dendrogram was visualized,
as shown in Fig. 2B. The construction of the weighted gene coex-
pression network required a soft threshold b to calculate the adja-
cency matrix weight parameter, and the optimal soft threshold
was 6 using the pickSoftThreshold function; the selection process
is shown in Fig. 2C, D, and E. Further construction of the weighted
SE55235 and GSE12021 datasets’ distribution of all differentially expressed genes is
184 that were up-regulated (red dots) are mapped. Black dots represent genes that
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Fig. 2. Gene co-expression network construction by WGCNA. (A-B) Gene Module Clustering. (C) Selection of co-expressed gene network parameters. The optimal soft
threshold is mainly referred to the left figure, which is the scale-free fit index (y-axis) under different soft thresholds (x-axis). The red line indicates the subjectively selected
scale-free fit index, which is 0.9. From the left figure, when the scale-free fit index is 0.9, the minimum soft threshold for constructing scale-free network is 6, so we can
choose 6 as the optimal soft threshold for subsequent analysis. The right figure shows the network connectivity with different soft thresholds. (D) Cut the clustering
dendrogram at a height of 0.23 to find and combine related modules. (E) Delineation of gene co-expression networks. The top half is a hierarchical clustering tree diagram of
genes, and the bottom half is the gene modules, or network modules. The top and bottom correspond to each other, and you can see that genes that are close together
(clustered to the same branch) are divided into the same module. (F) Module-trait correlation heat map. The leftmost color block represents the module, and the rightmost
color bar represents the range of correlations. In the middle part of the heat map, the darker the color the higher the correlation, red indicates positive correlation and green
indicates negative correlation; the numbers in each cell indicate correlation and significance. (G-H) The relationship between the midnightblue module, yellow module and
OA is shown in a scatter plot. The key modules midnightblue, yellow and the traits of interest were further mined to see if there was some correlation between the gene and
module correlation (Module Membership, MM) and the gene and trait correlation (Gene Significance, GS). The above scatter plot shows that MM and GS are positively
correlated, indicating that these genes, which are highly correlated with traits, also play a pivotal role in the key module. (I) Clustering dendrogram of module feature genes.
Based on the topological overlap matrix, a heat map of the correlations between genes can be drawn. Where the darker the color, the stronger the interaction between genes.
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gene network was based on TOM, the minimum module size was
set to 50, and a total of 30 gene modules were detected. The mod-
ule identification results are shown in Fig. 2F. Module-trait corre-
lation analysis showed that, in terms of disease characteristics,
the yellow module (765) showed the strongest negative correla-
tion (cor = -0.91, 8e-16), and the midnight-blue module (312)
showed the strongest positive correlation (cor = 0.78, 4e-09); the
results are shown in Fig. 2G.

3.3. Acquisition of hub genes and GO functional enrichment analysis
and KEGG pathway enrichment analysis

A total of 1,077 key module genes were intersected with 390
DEGs to obtain 161 hub genes, and a Venn diagram was drawn.
As shown in Fig. 3A, KEGG pathway enrichment analysis
(Table S1) and GO function enrichment analysis (Table S2) were
performed on the hub genes, which enriched 810 biological pro-
cesses, 62 molecular functions, 21 cellular components, and 42
pathways (p < 0.05). For BPs, the top 10 enrichment items were
mainly involved in the response to peptides, cellular response to
external stimuli, negative regulation of immune system processes,
28
muscle cell proliferation, and other biological processes (Fig. 3B).
The top 10 enrichment items for CCs and MFs are shown in
Fig. 3B. According to the findings of the KEGG pathway enrichment
study, the hub genes were primarily involved in cellular metabolic
processes, including osteoblast differentiation and the signaling
pathways of tumor necrosis factor (TNF), interleukin (IL)-17, p53,
and JAK-STAT (Fig. 3C).

3.4. Screening for signature biomarkers through a comprehensive
strategy

First, we applied the LASSO regression model for variable
screening. As shown in Fig. 4A, each color curve in the first plot
represents the trajectory of each independent variable coefficient.
The later the coefficient is compressed to zero, the more important
the variable becomes as the lambda value changes. The vertical
coordinate in the second plot is the binomial deviance (dichoto-
mous anomaly), which represents the magnitude of the error of
the model. Our goal was to select the model with the lowest pos-
sible lambda characteristics and the smallest possible error.
Lambda.min obtained the smallest mean value of the target covari-



Fig. 3. Functional analysis of key module genes merged with DEGs. Venn diagram of key module genes and DEGs (A). GO (B) and KEGG (C) enrichment analysis of hub
genes in the OA group.

Fig. 4. Screening for signature genes. (A) Adjustment of parameter selection and LASSO coefficient curves for hub genes in the LASSO model. In the graph on the left, a line
represents a gene, and the end of these genes will point to a vertical coordinate, which is the coefficient, and LASSO will count a coefficient for each gene. In the graph on the
right, there are two dashed lines, and the parameter corresponding to the one on the left is called lambda.min. As you can see from the graph, the right graph corresponds to a
value of 15 on the left, indicating that there are 15 coefficients for the genes that can stay. (B) Biological marker screening via the support vector machine recursive feature
elimination (SVM-RFE) arithmetic. The horizontal coordinate Number of Features represents the number of features; then, the vertical coordinate 5 X CV Accuracy, which
represents the accuracy of curve change after 5 times cross-validation. The Fig. 15�0.975 means there are 15 features with an accuracy of 0.975. The closer this accuracy is to
1, the higher the accuracy is. (C) randomForest error rate versus the number of classification trees. (D) The intersection genes obtained by the three algorithms. The horizontal
coordinates represent the number of trees based on the random forest model, respectively, and the vertical coordinates represent the error rate of the corresponding model,
using the number of trees corresponding to the point with the lowest error rate.
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ates among all lambda values. The optimal lambda was determined
to be 0.022 after 10-fold cross-validation. Fifteen genes were iden-
tified as feature genes of OA among the 161 target genes (Fig. 4A;
Table S3). In the SVM-RFE algorithm, the classifier error was min-
imized when the number of features was 15 (Fig. 4B; Table S4). In
addition, 161 target genes were used to construct the RF model
(Fig. 4C; Table S5), and the top 30 genes were ranked according
to their relative importance and identified as characteristic genes.
Fig. 4C shows the performance of the random forest algorithm. By
applying the gene set, we built the random forest model separately
according to the different number of trees and calculated the error
rate of this model. The number of trees corresponding to the point
with the lowest error rate was adopted. The genes obtained by the
three algorithms were intersected, and four final diagnostic signa-
ture genes were obtained: FKBP5, EPYC, KLF9, and PDZRN4
(Fig. 4D).

3.5. Diagnostic column line graphs and ROC curves

A nomogram (Fig. 5A) was constructed as a diagnostic tool for
OA progression by combining four diagnostic signature genes
(FKBP5, EPYC, KLF9, and PDZRN4). In the nomogram, a score was
given to the expression of each gene, and a total score could be cal-
culated for each patient. This total score corresponded to the prob-
ability of OA occurrence in each patient. Calibration curves and
DCA curves were applied to the dataset (GSE55235, GSE12021,
and GSE55457) to construct the predictive ability of the nomo-
gram. The calibration curves (Fig. 5B) indicated that the nomogram
could predict the occurrence of OA more accurately. DCA curves
showed that the patients diagnosed with OA could benefit from
the clinical treatment (Fig. 5C). The ROC curves of the genes
Fig. 5. Construction and validation of Nomogram diagnostic model; diagnostic significa
Decision Curve Analysis (DCA) for evaluating clinical predictive model. (C) Calibration c
dataset. (H-K) ROC assay for signature genes of the validation dataset.
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(Fig. 5D) indicated that they all have the potential to be new diag-
nostic markers with AUC values of 0.989 (EPYC), 0.916 (FKBP5),
0.992 (KLF9), and 0.874 (PDZRN4). The validation set (GSE55457)
could be similarly confirmed (Fig. 5E), with AUC values of 0.970
(EPYC), 0.940 (FKBP5), 0.980 (KLF9), and 0.930 (PDZRN4).

3.6. Signaling pathways associated with signature genes

We divided the dataset into high- and low-expression groups
according to the median value of signature gene expression and
performed GSEA on four signature genes. The results revealed that
several signature gene high-expression groups were significantly
enriched in immune response-related pathways, the IL-17 signal-
ing pathway, allograft rejection, and the TNF signaling pathway
(Fig. S1).

3.7. Hallmark Gene Set with ssGSEA

Further study of phenotypic differences between OA and nor-
mal samples using ssGSEA showed that in the set of all genes with
significant differences, the OA group scored higher than controls in
peroxisomes, and the OA group scored lower than controls in the
gene sets for IL-2 STAT5 signaling, UV response up, p53 pathway,
estrogen response early, apoptosis, TGF-b signaling, cholesterol
homeostasis, hypoxia and TNF-a signaling via NF-jB (Fig. 6A).
EPYC was significantly negatively correlated with UV response
up, TNF-a signaling via NF-jB, TGF-b signaling, the p53 pathway,
hypoxia, early estrogen response, and apoptosis, and significantly
positively correlated with peroxisome and interferon-alpha
responses. FKBP5 was significantly positively associated with UV
response up, unfolded protein response, MYC targets V2, hypoxia,
nce of signature genes in OA. (A) Nomogram for predicting the diagnosis of OA. (B)
urves to evaluate consistency (D-G) ROC assay for signature genes of the training



Fig. 6. Correlation of OA with Hallmark pathway. (A) Correlation of signature genes with Hallmark pathway. (B) Comparison of ssGSEA scores of Hallmark pathway in OA
group and healthy controls. *P < 0.05, **P < 0.01, ***P < 0.001, NS not significant.
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cholesterol homeostasis, and androgen response. KLF9 was signif-
icantly positively associated with UV response up, unfolded pro-
tein response, TNF-a signaling via NF-jB, P53 pathway, MYC
target V2, MYC target V1, hypoxia, early estrogen response, choles-
terol homeostasis, apoptosis, androgen response, and significantly
negatively correlated with peroxisomal, notch signaling, and
interferon-alpha responses (Fig. 6B).

3.8. Diagnostic signature gene correlation and expression validation

The expression of these four genes in OA was verified using the
pooled dataset of GSE55235 and GSE12021 (Fig. 7A). FKBP5 and
KLF9 were expressed at significantly lower levels in patients with
OA, and EPYC and PDZRN4 were significantly highly expressed in
Fig. 7. Expression of signature genes and correlation analysis. (A) Differential analysi
genes in the validation cohort. (C) Correlation between signature genes.
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patients with OA, which was confirmed in the GSE55457 dataset
(Fig. 7B). Additionally, we calculated the Pearson correlation coef-
ficient between diagnostic feature genes. As shown in Fig. 7C, there
were significant interactions between the diagnostic features.
Except for the significant positive correlations between FKBP5
and KLF9, EPYC, and PDZRN4, there were significant negative cor-
relations between the remaining genes, suggesting that the four
genes may not have mutually reinforcing relationships.

3.9. Immunoinfiltration analysis

The CIBERSORT algorithm was used to examine the fraction of
22 immune cells in the tumor microenvironment, and the results
are shown in Fig. 8A. We did not detect any appreciable infiltration
s of signature genes in the training cohort. (B) Differential analysis of the signature



Fig. 8. Association of signature genes with immune infiltration in OA. (A) Application of the CIBERSORT algorithm to predict the percentage of 21 immune cell species. (B)
After the removal of one non-differential immune cell, the graph shows the correlation heat map of 21 immune cells. (C) Violin plot showing differences in 21 immune
infiltrating cells between the two groups.
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of activated dendritic cells into the tumor microenvironment. Dif-
ferential and correlation analyses of immune cells were performed
to determine the correlation between OA and immune cell infiltra-
tion. In the differential analysis, seven immune cell types were sta-
tistically significant: memory B cells, plasma cells, resting memory
CD4+ T cells, regulatory T cells (Tregs), activated natural-killer (NK)
cells, resting mast cells, and activated mast cells (Fig. 8C). The heat
map (Fig. 8B) demonstrates the Pearson correlation between
immune cells, which showed that in patients with OA, naive CD4
+ T cells were significantly and positively correlated with activated
memory CD4+ T cells; resting NK cells were significantly and pos-
itively correlated with naive CD4+ T cells; activated mast cells
were positively correlated with resting memory CD4+ T cells; eosi-
nophils were positively correlated with activated NK cells; acti-
vated mast cells were negatively correlated with resting mast
cells; naive B cells were negatively correlated with memory B cells;
and resting mast cells were negatively correlated with resting
memory CD4+ T cells, which confirmed the feasibility of correla-
tion analysis to predict biomarkers.

3.10. Analysis of the correlation between diagnostic signature genes
and immune infiltrating cells

In the correlation analysis (Fig. 9), EPYC was positively corre-
lated with resting mast cells, plasma cells, memory B cells, and
Tregs and negatively correlated with activated NK cells, resting
memory CD4+ T cells, and activated mast cells. FKBP5 was posi-
tively correlated with activated mast cells, resting memory CD4+
T cells, and eosinophils and negatively correlated with Tregs and
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resting mast cells. KLF9 was positively correlated with activated
mast cells, resting memory CD4+ T cells, activated NK cells, and
eosinophils, and negatively correlated with plasma cells, quiescent
mast cells, and Tregs. PDZRN4 was positively correlated with rest-
ing mast cells, memory B cells, plasma cells, CD8+ T cells, and Tregs
and negatively correlated with resting memory CD4+ T cells and
activated mast cells.
3.11. Expression of FKBP5 in normal and tumor tissues

To further explore the interactions between diagnostic signa-
ture genes, we used Genemania to construct PPI networks. FKBP5
had the highest degree value; therefore, we included FKBP5 in a
deeper analysis. As shown in Fig. S2, the PPI network centered on
FKBP5 was significantly enriched in NF-jB signaling, toll-like
receptor signaling pathway, threonine kinase activity, and pattern
recognition receptor signaling pathways, all of which play an
important role in tumorigenesis and chemoresistance; therefore,
FKBP5 was included in further analysis. Taking the TCGA database
as an example (Fig. 10A), among all 13 statistically significant
tumor types, only two types of tumors (glioblastoma multiforme
(GBM) and liver hepatocellular carcinoma (LIHC)) had significantly
high expression of the FKBP5 gene (Fig. S3). After merging the
TCGA database with the GTEx database (Fig. 10B), 18 of the 21
tumors had low FKBP5 expression, and the remaining three
tumors, including brain lower grade glioma (LGG), GBM, and LIHC,
had high FKBP5 expression. The expression of FKBP5 in these cell
lines is shown in Fig. 10C.



Fig. 9. Correlation of signature genes with infiltrating immune cells. (A) EPYC (B) FKBP5 (C) KLF9 (D) PDZRN4.
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3.12. FKBP5 is associated with multiple tumor stages

The correlation between FKBP5 and pathological staging of dif-
ferent tumors was calculated using the online tool GEPIA. Lymph
node diffuse large B-cell lymphoma (DLBC), head and neck squa-
mous cell carcinoma (HNSC), kidney chromophobe, lung adenocar-
cinoma (LUAD), stomach adenocarcinoma (STAD), and uterine
carcinosarcoma (UCS) were found to correlate significantly with
tumor staging (Fig. 11), and the p < 0.05 was considered statisti-
cally significant.
3.13. The relationship between FKBP5 and tumor prognosis

To assess the predictive link between gene expression and prog-
nosis in each tumor, as illustrated in Fig. 12, we created a Cox pro-
portional hazards regression model. Prognostic significance was
determined using a statistical test with the log-rank test. Finally,
high expression in eight tumor types (GBMLGG, LGG, acute mye-
loid leukemia, LUAD, GBM, bladder urothelial carcinoma (BLCA),
uveal melanoma (UVM), and STAD) was associated with a poor
prognosis. Low expression in four tumor types (skin cutaneous
melanoma (SKCM), skin cutaneous melanoma-metastasis, READ,
and acute lymphoblastic leukemia) was associated with poor prog-
nosis. Among these, FKBP5 had the highest risk for UVM. Patients
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were subsequently dichotomized according to the best cut-off val-
ues to obtain survival differences between the high and low FKBP5
expression groups in different cancer types. The results showed
that the difference in survival was significant in all OS-related can-
cer types, while FKBP5 expression was not significantly correlated
with OS in all TCGA tumor types (hazard ratio = 0.94).

As shown in Fig. 13, the correlation between gene expression
and disease-free survival (DFS) in each tumor was analyzed by
building a Cox proportional hazards regression model, and statisti-
cal tests were performed using the log-rank test. Unlike OS, there
was a significant risk effect of FKBP5 expression in stomach and
esophageal carcinoma, pheochromocytoma and paraganglioma,
prostate adenocarcinoma (PRAD), and UCS, and FKBP5 expression
levels were associated with DFS in a variety of tumors.
3.14. Correlation between FKBP5 expression and immune infiltration

We used the TIMER database to calculate the association
between FKBP5 expression and multiple immune cell infiltration
to determine whether gene expression affects the tumor immune
environment. We found that infiltration scores for six immune cell
types (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages,
and dendritic cells) in the TIMER database were significantly asso-
ciated with FKBP5 expression in multiple malignancies (Fig. 14A)



Fig. 10. FKBP5 expression in various cancers. (A) Differential expression of FKBP5 in tumor and normal tissues among 33 tumors in the TCGA database. (B) TCGA combined
with data from normal tissues in the GTEx database, FKBP5 expression in pan-cancer. (C) Expression of FKBP5 in different tumor cell lines in the CCLE database.
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and validated these using the algorithms xCELL (Fig. 14B), quanTI-
seq (Fig. 14C), MCPcounter (Fig. 14D), and EPIC (Fig. 14E).

3.15. Correlation of FKBP5 expression with cancer immune check-point
gene expression

Several genes have been identified to be closely associated
with immune responses and, therefore, act as immune check-
points. We used cancer expression data from the TCGA data-
base to examine the association between FKBP5 and immune
check-points. In multiple cancer types, FKBP5 was significantly
associated with multiple genes, including CD86, CD274,
PDCD1LG2, CD28, CD48, CTLA4, TNFSF4, and bladder urothelial
carcinoma CD200, FKBP5 was found to be coexpressed with
more immune check-point genes in BLCA, SKCM, STAD, and
testicular germ cell tumors (TGCTs), which may indicate that
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FKBP5 is involved in the tumor immune response through
the above immune checkpoints in BLCA, SKCM, STAD, and
TGCT (Figure 15A).

3.16. FKBP5 correlates with TMB and MSI in some cancers

In UCS, uterine corpus endometrial carcinoma (UCEC), and
colon adenocarcinoma (COAD), FKBP5 expression was positively
correlated with TMB, while in thymoma, thyroid carcinoma, STAD,
PRAD, pancreatic adenocarcinoma, lung squamous cell carcinoma,
and esophageal carcinoma (ESCA), it was negatively correlated
with TMB. In UCEC, kidney renal papillary cell carcinoma, and
COAD, FKBP5 was positively correlated with MSI, but in TGCT,
STAD, PRAD, ovarian serous cystadenocarcinoma, HNSC, ESCA,
DLBC, and breast invasive carcinoma, FKBP5 expression was nega-
tively correlated with MSI (Fig. 15B and C).



Fig. 11. Correlation between FKBP5 and pathological stage of cancers. (A) DLBC; (B) HNSC; (C) KICH; (D) STAD; (E) UCS (F) LUAD.

Fig. 12. Expression of FKBP5 in different tumors in relation to overall survival (OS). (A) Using information from the TCGA database, single variate Cox regression analysis
was done to look into the connection between FKBP5 expression and overall survival (OS) in various tumor types. (B) In 13 tumor types, FKBP5 is correlated with overall
survival (OS). (C) By classifying different cancers into high and low FKBP5 expression groups based on median FKBP5 expression levels, the link between overall survival (OS)
and FKBP5 expression was examined.
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3.17. FKBP5 and drug reactions

FKBP5 expression was positively associated with drug response
in patients treated with hydroxyurea, fenretinide, fostamatinib,
DMAPT, RH1, 8-chloroadenosine, chlorambucil, 3 -bromopyruvate
35
(acid), imexon, nitrogen mustard, uracil mustard, parthenolide,
chelerythrine, and vorinostat. Notably, there was a negative corre-
lation between FKBP5 expression and kahalide F, a decapping pep-
tide from the sea slug Elysia rufescens that targets alterations in
lysosomal membrane function and is currently undergoing clinical



Fig. 13. Expression of FKBP5 in different tumors in relation to disease-free survival (DFS). (A) One variation using information from the TCGA database, Cox regression
analysis was used to examine the connection between FKBP5 expression and DFS in various tumor types. (C) By splitting different tumors into groups with high and low
FKBP5 expression based on median FKBP5 expression values, the connection between DFS and FKBP5 expression was examined. (B) In 4 tumor types, FKBP5 is correlated with
DFS.
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trials for a variety of oncology treatments. FKBP5 and the expected
drug responses are shown in Fig. 16.

3.18. Cancer phenotypes and methylation of FKBP5

We applied the GEPIA database to identify the 94 genes that
were most significantly associated with FKBP5 in pan-cancer. The
gene list was extracted, and the functionally enriched analysis
was performed. It was found that the genes significantly associated
with FKBP5 were significantly enriched in the functions of steroid
hormone signaling and intracellular substance transport (Fig. 17A).
Subsequently, we constructed an FKBP5-centered interaction net-
work using the BioGRID database (Fig. 17B). We found that FKBP5
physically interacts with NR3C1 and that NR3C1 has an important
function in steroid hormone signaling (Fig. 17C). And the expres-
sion of FKBP5 had a significant positive correlation with NR3C1
in most tumors (Fig. 17D). Based on these results, we hypothesized
that FKBP5 may play a tumor-promoting role in cancer by driving
steroid hormone signaling and intracellular substance transport.
DNA methylation directly affects cancer development and progres-
sion. We investigated the DNA methylation of FKBP5 using the
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UALCAN and TCGA databases. According to the UALCAN database,
FKBP5 methylation levels were significantly decreased in READ,
BLCA, KIRC, LUAD, LIHC, THCA, PCPG, TGCT, BRCA, PRAD, CESC,
HNSC, LUSC, UCEC, COAD, PAAD and THYM tissues compared to
normal tissues (Fig. 17E; Fig. S4).

3.19. Validation of the role of FKBP5 in immunotherapy in the TIGER
and TISIDB databases

According to data in public databases, in glioblastoma groups,
FKBP5 was low and statistically significant in the immunotherapy
non-responsive group. In Melanoma immunotherapy groups, the
gene was not consistently expressed in different data sets
(Fig. S5). Detailed information can be found in Table S6.

4. Discussion

OA is a chronic disease with high global prevalence, and its
diagnosis relies on clinical manifestations and imaging examina-
tions. These ancillary tests are often lagging, making it difficult to
predict and diagnose OA cases at an early stage; however, current



Fig. 14. Application of multiple tumor immune infiltration analysis tools to analyze the role of FKBP5 in tumor immunity. (A) XPIC; (B) MCPCOUNTER; (C) QUANTISEQ;
(D) TIMER; (E) XCELL.
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Fig. 15. (A) FKBP5 expression significantly correlates with most immune checkpoints in multiple tumors. (B) FKBP5 correlates with Microsatellite Instability (MSI) in a variety
of tumors. (C) FKBP5 correlates with tumor mutation burden (TMB) in a variety of tumors.

Fig. 16. Prediction of the relationship between FKBP5 expression and expected drug response.
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Fig. 17. (A) Functional enrichment analysis of FKBP5-related genes. (B) Interacting network of FKBP5. (C) Correlation analysis of FKBP5 with NR3C1. (D) Correlation analysis
of FKBP5 and NR3C1 in multiple tumors. (E) Methylation differences of FKBP5 in multiple tumor samples.
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technology does not yet allow for a cure for advanced OA. In addi-
tion, OA as a multifactorial disease has recently received more
attention regarding the role of inflammation and immune cells in
its pathophysiology, and the targets of these pathways bring new
possibilities for future OA immunotherapy [41]. However, many
challenges remain in identifying OA-related biomarkers and tar-
gets for drug therapy from current studies. As high-throughput
data continue to accumulate, new biological techniques and appli-
cations are needed to identify specific molecules as biomarkers for
early diagnosis and treatment, and to further explore the different
39
molecular mechanisms involved in the pathogenesis and progres-
sion of OA. Therefore, the search for characteristic diagnostic mark-
ers and clarification of the mechanisms of immune infiltration is
important for the prognosis of OA.

In the coexpressed gene set, 390 DEGs were identified, includ-
ing 184 upregulated genes and 206 downregulated genes, among
which the set of genes located in the same biological pathway or
exhibiting the same function under certain conditions often have
some connection. A gene coexpression network has been con-
structed [42]. By constructing a linear model of the relationship
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between genes within a module and the relationship between gene
traits within a module (MM & GS), the modules that are better
associated with clinical traits are screened. The intersecting genes
of the module genes and differentially expressed genes were used
as key (hub) genes for subsequent analysis. A total of 161 hub
genes were screened out, and GO enrichment analysis showed that
hub genes were mainly involved in cellular responses, such as
external stimulus, response to peptide, and myeloid cell differenti-
ation. KEGG enrichment showed that hub genes were associated
with the JAK-STAT, p53, TNF, and IL-17 signaling pathways, as well
as osteoclast differentiation.

The results of this study demonstrate a strong association
between multiple ILs and cytokines in OA. Previous studies have
shown that ILs, such as IL-1 b, IL-6, IL-15, IL-17, IL-18, and TNFs,
such as TNF-a, are the main inflammatory factors involved in OA.
These inflammatory factors lead to degradation of the extracellular
matrix and articular cartilage damage by affecting the release of
other inflammatory mediators and activating downstream signal-
ing pathways [43]. IL-1, IL-6, and TNF-a are involved in OA through
the NF and JAK/STAT pathways, which play important roles in the
pathogenesis of rheumatoid arthritis and OA [44], and inhibitors
targeting IL-1, IL-6, and TNF-a have been clinically beneficial
[44]. It has been shown that the p53 gene inhibits osteoblast pro-
liferation and enhances osteoblast apoptosis, thereby reducing
bone formation and acting as a bone-remodeling agent [45,46].
OA as a bone resorption disease is closely related to osteoclast
bioactivity, and abnormal osteoclast function leads to disruption
of subchondral bone remodeling. The above enrichment results
validate the relationship between OA-related genes and functional
molecular signaling pathways, which reflects the correctness of the
hub gene screen.

Through our comprehensive strategy and multiple validations,
FKBP5, EPYC, KLF9, and PDZRN4 were found to have high diagnos-
tic value and could be potential diagnostic and therapeutic targets
for OA. LASSO is a statistical approach for compressed estimation
that creates a penalty function to determine the best diagnostic
model. The model preserves certain regression coefficients that
are zero, while compressing the regression coefficients such that
the total absolute value of the regression coefficients employed is
less than a fixed value. Subset shrinkage is an advantage of this
approach [31]. A support vector machine (SVM) is a general
machine-learning method that uses the principle of minimizing
structural risk while minimizing empirical error, which can better
solve the problems characterized by high latitude, small samples,
and nonlinearity. It is an algorithm that combines SVM with recur-
sive feature filtering (RFE) to train the model by multiple iterations
to remove unnecessary features that reduce the spatial dimension-
ality [47]. Random forest is an integrated algorithm consisting of
decision trees [48], whose models have the advantages of high ran-
domness, noise immunity, and high interpretability, but at the
same time, their models tend to be too general and do not have
the ability to correctly handle difficult samples. All three algo-
rithms have their own characteristics, and this study integrated
each. The ROC curves of the test group confirmed that the integra-
tion of the three algorithms improved the accuracy while reducing
the number of critical genes. Previous studies have identified
biomarkers of OA using machine-learning methods. For example,
Liang et al. [49] used SVM-RFE and Lasso algorithms to screen
APOLD1 and EPYC as diagnostic genes for OA; Zhang et al. [50]
used similar screening methods to select EPYC and KLF9 as diag-
nostic genes, which may indicate that differences in logFC values,
gene set selection, and parameter selection affect the screening
of candidate genes. However, they did not validate the expression
of diagnostic genes based on intra-articular cavity samples, while
the EPYC and KLF9 genes were identified as diagnostic markers
for OA, which also indicated the feasibility of our analysis strategy.
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FKBP5, a member of the immunophilic protein family, was first
identified 20 years ago by Baughman et al. and has now been asso-
ciated with a variety of specific diseases, such as stressor exposure
leading to multiple psychiatric disorders, asthma, obesity, and type
2 diabetes [51,52]. It has been established that age- and stress-
related epigenetic characteristics increase the FKBP5 response to
NF-jB through a positive feedback loop, and that FKBP5 overex-
pression promotes NF-jB-associated peripheral inflammation
[53]. Many studies now support a central role for NF-jB signaling
in the intrachondrocytic inflammatory response [54]. Therefore,
we hypothesized that FKBP5 is involved in the regulation of the
chondrocyte inflammatory response. In addition, FK506-binding
protein 51 (FKBP5/FKBP51) is an important regulator of the stress
response that acts as a cochaperone to alter the folding and activity
of other proteins involved in regulating the sensitivity of the gluco-
corticoid receptor (GR) [55], while GR-mediated signaling has been
shown to be involved in the metabolism of OA, affecting intraartic-
ular behavior and communication of multiple cells in healthy and
abnormal states [56].

EPYC is a member of the small leucine-rich proteoglycan (SLRP)
family, which regulates protofibrillogenesis by interacting with
collagen fibers and other extracellular matrix proteins. According
to previous reports, SLRPs may be crucial to the pathophysiology
of OA [57,58]. SLRP fragmentation is increased in OA joints com-
pared to normal cartilage [59], whereas it has been shown that
chondrocytes increase the production of SLRPs in advanced
arthritic joints [60]. Therefore, it is reasonable to infer that SLRPs
are essential for maintaining normal chondrocyte activity and car-
tilage tissue integrity. In addition, many SLRP metabolic fragments
have been reported as possible biomarkers for assessing cartilage
metabolism or OA progression [59,60], and some investigators
have advocated SLRP fragmentation as a promising biomarker for
assessing OA status [61]. Although the role of EPYC as a biomarker
in OA is unknown, it has a high potential for OA diagnosis based on
its background and raw letter analysis.

KLF9 is a protein-coding gene that encodes a transcription fac-
tor. This encoded protein binds to the GC box of the promoter and
regulates mRNA transcription. Reactive oxygen species (ROS) are
by-products of cellular respiration and metabolism in the mito-
chondria, and small amounts of ROS are actively produced by cells
to act as signaling molecules. Under oxidative stress conditions,
cellular metabolism and expression products maintain the cellular
redox state by activating NF-E2-related factor 2 (Nrf2). Nrf2
induces KLF9 expression, while KLF9 amplifies oxidative stress by
inhibiting Txnrd2 [62], increasing intracellular ROS, which then
participates in the pathophysiological progression of OA through
complex signaling pathways [63]. The results of ssGSEA showed
a significant correlation between KLF9 and hypoxia and apoptosis;
therefore, the mechanism of apoptosis induced by ROS in patients
with OA and the potential role of KLF9 in this process need to be
further investigated.

PDZRN4, a member of the PDZRN family, is more likely to func-
tion as an E3 ubiquitin ligase because of its multiple PDZ and RING
structural domains [64]. Current studies suggest that it may act as
a tumor suppressor in a variety of cancers [65,66,67]. In addition,
PDZRN4 has been proposed as a novel biomarker for multiple scle-
rosis; however, its exact role of PDZRN4 in OA requires further
investigation.

There is growing evidence to support the key role of the innate
and acquired immune systems in low-grade inflammation associ-
ated with OA. Macrophages are the most common immune cell
type in osteoarthritic synovial infiltrates [68] and have been classi-
fied into two subclasses: ‘‘classically activated” (M1) and ‘‘alterna-
tively activated” (M2) [69]. M1 macrophages are activated by
inflammatory mediators (e.g., TNF- and interferon c (IFNc)) or
pathogen-associated molecular patterns, and secrete proinflamma-
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tory cytokines (e.g., IL-1, IL-6, IL-12, and TNF-a) and other tissue
damage signals. In contrast, M2 macrophages are activated by
another pathway, releasing growth and angiogenic factors and reg-
ulating T cell function, which are involved in the downregulation of
inflammation and tissue remodeling. However, a simple classifica-
tion of macrophages does not reflect the complexity of cellular
mechanisms, and altered polarization states of both may play a
key role in the coordination of inflammation and regeneration,
which requires further in-depth studies. T cells are second only
to macrophages in the proportion of synovial infiltrating immune
cells [70], and CD4+ T cells are more abundantly aggregated in
the synovial membranes. Specifically, synovial tissue is dominated
by the presence of Th1, Th17, and cytotoxic T cells, and these cell
types produce catabolic substances including IL-2, IL-17, IL-23,
IFN-c, and TNF-a, which promote infiltration of immune cells
and stimulate cartilage matrix protease destruction, thereby exac-
erbating cartilage damage [11,71]. Therefore, regulation of the
local immune microenvironment and tissue regeneration microen-
vironment should receive more attention in the treatment of OA. In
a study on OA and rheumatoid arthritis (RA), Tregs were increased
in OA and RA compared to normal synovium, and Tregs present in
RA and OA synovium were very similar [72]. In the presence of
TGF-b, naive T cells differentiate into Treg cells, and Tregs produce
cytokines, such as TGF-b, IL-10, and IL-35, which suppress inflam-
mation and maintain immune tolerance. The production of Tregs is
one of the main targets of immunotherapy and transplantation in
autoimmune diseases, and Treg infiltration is significantly higher
in patients with OA than in normal patients, as confirmed by the
CIBERSORT algorithm. This suggests that the induction of Tregs
in early OA might be a new research frontier for OA diagnosis
and treatment. Immune infiltration analysis also revealed that
mast cell infiltration was significantly higher in patients with OA
than in the normal group because of the storage of multiple medi-
ators, including cytokines and enzymes. These have been shown to
regulate bone homeostasis and participate in a variety of bone
metabolic diseases, and may regulate bone formation and healing
tissue remodeling by influencing multiple pathological responses
of osteoclasts in bone injury [46]. A clinical study found that the
use of H1 antihistamine therapy was associated with a decrease
in the prevalence of OA, which supports the important role of
MC in the pathogenesis of OA, thus demonstrating that mast cells
can be a new therapeutic target for OA [73].

A relatively large number of synovial infiltrates were observed
in the OA synovium. In OA, cartilage destruction caused by multi-
ple factors can activate humoral immunity, and multiple antibod-
ies against cartilage breakdown products, such as bone bridge
protein, cartilage intermediate layer protein, YKL-39, fibulin, and
collagen have been detected [74,75]. In addition, immune cells
infiltrating the OA synovium are oligoclonal, confirming that
intraarticular B-cell infiltration is antigen-driven [76]. Antibodies
play an important role in many diseases. When risk factors are pre-
sent, humoral immunity activates the complement system and
forms the terminal complement complex (TCC). However, the
absence of TCC might negatively affect fracture healing [77].

Based on high-throughput data from TCGA and CCLE databases,
we found that FKBP5 was differentially expressed in multiple can-
cer tissues. In addition, prognostic analysis revealed that this mole-
cule has a poor prognosis in multiple tumors. In combination with
ssGSEA, FKBP5 was associated with more metabolic dysfunction,
which plays an important role in cancer progression, than other
genes. A search for cancers associated with FKBP5 revealed that this
molecule has not been systematically elaborated in pan-cancer;
therefore, we elevated FKBP5 to a new dimension for analysis.

We found that several existing literatures have demonstrated
the role of FKBP5 in inflammation and immune regulation. It has
been shown that stress- and age-induced epigenetic alterations
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upregulate FKBP5 expression, and that FKBP5 can regulate inflam-
matory responses by enhancing TNF-induced NF-jB activation. In
contrast, counteracting FKBP5 by genetic deletion (CRISPR/Cas5-
mediated) or selective pharmacological inhibition blocked the
effect on NF-jB [51,78]. In addition, several studies have found
that the expression level of FKBP5 is regulated by TNF-a and other
inflammatory factors, which also suggests that FKBP5 is closely
related to the TNF pathway in the regulation of inflammation
and immune responses. Although the link between FKBP5 and
OA and cancer is not fully understood, previous studies have sug-
gested that FKBP5 may play a role in both diseases by participating
in inflammatory and cellular signaling pathways. Therefore, we
believe that our investigations may provide new insights into the
pathogenesis of these diseases and may identify common thera-
peutic targets.

Some studies have reported a correlation between OA and the
development of several types of cancer. First, OA has been shown
to be associated with an increased risk of cancer, which greatly
increases the risk of leukaemia subtypes, myelodysplastic syn-
dromes and essential thrombocytosis [17]. Second, drugs used to
treat OA may be associated with the observed risk of cancer, and
studies have shown that NSAIDs [18] and hyaluronic acid com-
pounds [23] taken by patients with osteoarthritis promote the
development of cancer. Therefore, we further explored the role of
FKBP5, a gene characteristic of osteoarthritis, in pancancer. FKBP5
has been shown to be differentially expressed in a variety of
tumors, including melanoma, glioma, colon cancer, and prostate
cancer [79]. Among them, FKBP5 expression was associated with
metastatic lesions in melanoma [80] and correlated with staging
and overall survival in glioma [81], which was confirmed in our
study and identified additional malignancies associated with
FKBP5 prognosis and staging. FKBP5 has been shown to regulate
different signaling pathways under specific conditions affecting
tumor metabolism, including the steroid hormone-receptor signal-
ing pathway, NF-jB signaling pathway, and AKT-PHLPP pathway,
which have been shown to be involved in tumorigenesis and tumor
resistance responses [82]. For example, FKBP5 transcription can be
induced in prostate cancer cells by activating steroid hormone
receptors, thereby stimulating cell growth, suggesting that FKBP5
can act as a drug target to disrupt AR-mediated signaling in pros-
tate cancer [83]. This AR-mediated signaling acts as a marker for
several functional tumor signaling pathways, as well as in response
to antitumor drugs [84]. Notably, this may correlate with the use of
multiple survival methods by tumor cells to evade immunity;
therefore, we retrieved and compiled a list of 47 immune check-
point genes to predict their correlation with FKBP5 expression
and used multiple algorithms to estimate TMB in the tumor. We
hope that this information can be used to predict the effect of
immunotherapy with FKBP5 or to develop new targeted therapeu-
tic options.

However, despite the use of multiple algorithms to screen genes
and integrate information frommultiple databases, there were still
some limitations to this study. First, although bioinformatics anal-
ysis provided us with important information about FKBP5 in malig-
nancies, molecular biology approaches or additional in vitro and
in vivo experiments are needed to validate the potential role of
FKBP5 in cancer and tumor immunity. Although we integrated data
from OA samples from all populations, the limited clinical informa-
tion in the database made it difficult to avoid conclusions with lim-
itations and bias.
5. Conclusions

In this study, FKBP5, EPYC, KLF9, and PDZRN4 were identified as
potential biomarkers of OA, thereby expanding the known poten-
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tial molecular mechanisms of OA lesions and predicting the devel-
opment of immune cells in OA. In addition, FKBP5, a core gene
associated with OA and pancancer, is a promising therapeutic tar-
get in several cancers and is a marker of immune infiltration and
poor prognosis for OA.
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