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Background: Fungal nanofactories have been utilized to synthesize silver and gold nanoparticles. This
study was designed to mycosynthesize and characterize silver and gold nanoparticles (AgNPs and
AuNPs) and to study their effect on aflatoxin B1 production by Aspergillus flavus.
Results: Silver and gold nanoparticles were synthesized by endophytic Aspergillus versicolor and then ana-
lyzed by UV–vis spectroscopy. The results revealed surface plasmon resonance peaks at 432 and 536 nm
for Ag and Au nanoparticles, respectively. The obtained transmission electron microscopy results
revealed the fashioning of spherical AgNPs and spherical and hexagonal AuNPs with a mean particle mag-
nitude of 5–37 and 37–62 nm, respectively. X-ray diffraction showed the typical face-centered cubic
structure of the mycosynthesized Ag and Au nanoparticles. An in vitro investigation showed that
AgNPs, AuNPs, and their mixture at different concentrations (10000, 5000, 3000, 1000, 750, 500, 250,
and 125 lg/mL) could inhibit or reduce the outgrowth and production of aflatoxin B1 (AFB1) by A. flavus.
The concentration that showed no AFB1 production was less than those for the inhibition of fungal
growth. AgNPs, AuNPs, and their mixture also exhibited promising antiradical scavenging activity.
Conclusions: The use of fungi in the metallic nanoparticle’s fabrication and the utilization of mycosynthe-
sized nanoparticles is promising as a substitute of chemicals to control antiaflatoxigenic fungi.
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1. Introduction

Nanoparticles, which are known to possess a dimension of
100 nm or less in size, [1] have gained growing awareness as inor-
ganic antimicrobial agents in nonfood applications [2] because of
their distinctive physical and chemical attributes, which vary con-
siderably from their traditional coordinates [3]. Physical and chem-
ical methods, which converge on utilizing a vast amount of
chemicals and elevated temperature through radiation, are used
to achieve the synthesis of metal nanoparticles. Modern investiga-
tions have shown the use of easy, neat, eco-friendly, inexpensive,
and safe techniques for bio-fabrication of nanoparticles [4]. This
involves the use of various biological resources that include bacte-
rial, fungal, algal, plant, and animal metabolites to synthesize dif-
ferent metal nanoparticles [5,6,7,8,9]. Fungal nanofactories have
been utilized to synthesize silver, platinum, silica, zirconium, iron
titanium, and gold nanoparticles [1,10,11,12]. Green chemistry is
a simple eco-friendly technique for the fabrication of metal
nanoparticles in which fungi are employed for nanoparticle
biosynthesis [13].

Aflatoxins are a small group of closely related heterocyclic sec-
ondary metabolites [14]. It was found as difuranocoumarin
derivatives biosynthesized through a polyketide pathway [15].
Of the 20 well-characterized diverse sorts of aflatoxins, aflatoxins
B1, B2, G1, G2, M1, and M2 are considered to be the most important
ones [16], and along with aflatoxin B1 (AFB1), they are the most
common and toxic toxins that cause a serious risk to human
and animal health [17]. Aflatoxin B1 is produced mainly by afla-
toxigenic species of filamentous fungi, common saprophytes,
and opportunistic pathogens Aspergillus (A. flavus, A. parasiticus,
and A. nomius) [18]. Aflatoxin B1 is the most common globally
and reported in about 75 % of food and feeds contamination with
aflatoxins [19,20].

Aflatoxin B1, whose mutagenic, hepatic-carcinogenic, terato-
genic, and immunosuppressive activity to a broad spectrum of liv-
ing organisms has been widely studied [21], while the
International Agency of Research on Cancer was classified AFB1

as Group 1A carcinogen [22]. The European Commission has estab-
lished 2 ng/g as the maximum level for AFB1, 4 ng/g for combined
aflatoxins in foodstuffs, and 0.05 ng/mL for AFM1 in liquid milk
[23]. Inhibiting the outgrowth of aflatoxigenic fungi is first neces-
sary to prevent aflatoxins production in agricultural merchandises
[24].

Physical, chemical, and biological methods to reduce aflatox-
ins can be employed for detoxification or removing from con-
taminated food and nutrients [25]. Larger surface area of
nanoparticles, because of their size, interact with microorgan-
isms rather than the larger shape of particles [26]. Thus, it
may be functional to utilize nanoparticle-based modes as a sub-
stitutional remedy versus fungi [27]. The influence of silver
nanoparticles on the development and AFB1 biosynthesis of
Aspergillus parasiticus was studied and determined in an earlier
report [28]. This study aimed to evaluate antiaflatoxigenic activ-
ities using different concentrations of mycosynthesized AgNPs
and AuNPs by A. versicolor individually/mixture on outgrowth
and AFB1 accumulation by A. flavus.
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2. Materials and methods

2.1. Isolation of fungal isolates

Aspergillus versicolor was utilized for the biosynthesis of
nanoparticles as it exhibited a great potency to biosynthesize both
investigated nanoparticles among the 10 tested fungal isolates. A.
versicolor was isolated as an endophyte from sand lily (Pancratium
maritimum L.) leaves [29], as previously described by Kumar et al.
[30], while aflatoxigenic A. flavuswas isolated from peanut (Arachis
hypogaea L.) seeds according to earlier report [31].

2.2. Molecular identification of isolated fungi

Czapek Dox broth medium was used to culture the pure fungal
isolates for 5 d at 28�C. Total DNA was extracted from each isolate
using a specific kit ‘‘Norgen Plant/Fungi DNA Isolation Kit (Sigma,
Thorold, Canada)” [32]. To amplify the ITS region of the selected
strains, universal primers ITS-1 (50-TCC GTA GGT GAA CCT GCG
G-30) and ITS-4 (50-TCC TCC GCT TAT TGA TAT GC-30) were
employed, as previously described by Mohamed et al. [33]. PCR
amplification was performed following the same protocol as earlier
described by Hassan et al. [32].

2.3. Preparation of mycelial-free culture filtrate

The fungal biomass was cultivated aerobically in PD broth and
incubated for 5 d at 28�C in an orbital shaker with constant shaking
at 150 rpm/min. Subsequently, the fungal biomass obtained was
then filtered by using a Whatman no. 1 filter paper, and the resul-
tant biomass was washed numerous times with double distilled
water. Then, 10 g of fungal mycelia were soaked into 200 mL sterile
double distilled water in a 500 mL Erlenmeyer flask and was fur-
ther incubated at 28�C for 48 h with gentle shaking at 120 rpm.
The filtrate was then used for nanoparticle synthesis.

2.4. Mycosynthesis of silver and gold nanoparticles

Stock solutions of both silver nitrate and gold chloride (hydro-
gen tetrachloroaurate (III) hydrate (HAuCl4�3H2O) were prepared
in deionized water, and the solutions were then individually added
to the mycelial-free filtrate, resulting in a final concentration of
1 mM. The flask was then kept in dark condition at 28�C for
72 h. Gold chloride solution and fungal filtrate served as negative
controls. The resulted nanoparticles were collected by centrifuga-
tion and freeze-dried by lyophilization, and a certain weight was
disseminated by using ultra-sonication in sterile double distilled
water for use as stock solutions.

2.5. Characterization of AuNPs and AgNPs

2.5.1. UV–visible (UV–vis) spectroscopy
The formation of AgNPs and AuNPs was determined by visual

observation of color change that indicates the reduction reaction,
and AgNPs and AuNPs were established by UV–vis spectroscopy
(Jasco V-530) for the occurrence of distinguishable surface plas-
mon resonance bands of AgNPs and AuNPs.
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2.5.2. Transmission electron microscopy (TEM)
The morphology of newly synthesized AgNPs and AuNPs were

analyzed by a transmission electron microscope (JEOL/JEM-2100,
HRTEM, Tokyo, Japan). The examined TEM specimen was con-
cocted by drop-casting and dissemination of AgNPs and AuNPs
on copper grids, and the samples were then dried at ambient
temperature.

2.5.3. Fourier transform infrared spectroscopy (FTIR)
FTIR (6100, Perkin-Elmer, Germany) was utilized to investigate

the functional groups on the surface of AgNPs and AuNPs at 4 cm�1

resolution and 400–4000 cm�1 wavelength range.

2.5.4. X-ray diffraction (XRD) analysis
The freeze-dried powders were subjected for XRD analysis for

the presence of elemental AgNPs and AuNPs, and the experiments
were performed on a X-ray diffractometer (Panalytical X’PERT
PRO) with Cu ka- radiation (kka = 1. 1.540562 Å) run at 30 mA
and 40 kV and scanning diffraction style in the 2£ of 5-90� range.

2.6. Impact of AgNPs and AuNPs and their mixture on the growth and
aflatoxin B1 accumulation of aflatoxigenic A. flavus strain

Dilutions of the stock solutions of AgNPs and AuNPs were pre-
pared using sterilized deionized H2O to attain the desired concen-
trations (10000, 5000, 3000, 1000, 750, 500, 250, and 125 lg/mL)
used for antimycotic and antiaflatoxigenic investigation. The dry
weight of the fungal biomass in each NPs treatment was then
recorded and compared with the control. All experiments were
repeated three times [27]. Aflatoxin B1 was purified and detected
using the thin-layer chromatographic (TLC) technique [34,35].

2.6.1. Determination of AFB1 by high performance liquid
chromatography (HPLC)

The concentration of AFB1 was determined by HPLC [36].

2.7. Radical scavenging activity by 1,1-diphenyl-2-picryl-hydrazyl
(DPPH) assay

The antioxidant properties of AgNPs and AuNPs were measured
as scavenging activity or as a hydrogen donating form based on the
procedure reported by Brand-Williams et al. [37] and Adebayo
et al. [38] with minor modifications (Fig. S1).

2.8. Data analysis

Statistical analysis was performed using SPSS (version 16), and
the differences were analyzed by one-way ANOVA. The values
were expressed as mean ± SE, and the significance level was con-
sidered as 0.05.
Fig. 1. Neighbor-joining phylogenetic tree of the ITS sequences of the isolated
fungal strains with the sequences of closely related strains: (A) the phylogenetic
tree of A. versicolor and (B) the phylogenetic tree of A. flavus.
3. Results

3.1. Fungal isolates and phylogenetic analysis

According to the phenotypic and phylogenetic characteristics, A.
versicolor was identified as an endophyte from the leaves of Pan-
cratium maritimum, while A. flavuswas identified as an isolate from
the seeds of Arachis hypogaea. Both the isolates were identified by
performing ITS region sequencing, and the sequences obtained for
the ITS regions were further subjected to a BLAST search at the
NCBI database. The two isolates were identified as Aspergillus
versicolor TU-63 (GenBank accession no. OL411612) and A. flavus
TU-61(GenBank accession no. OL411610) (Fig. 1).
28
Nucleotide comparisons of the ITS regions among the Aspergillus
and other similar strains revealed that the A. versicolor TU-63 strain
exhibited 100% and 98% similarity with the strains A. versicolor
MK722085 and A. versicolor MT609910 from the GenBank, respec-
tively. On the other hand, 99 and 98% identity was observed
between Aspergillus flavus TU-61 and A. flavusMZ052072 and A. fla-
vus MZ018647, respectively. Aspergillus flavus TU-61 also showed
approximately 97% and 96% similarity with A. flavus MW193211
and A. flavus MW193310, respectively.
3.2. Characterization of mycosynthesized AuNPs and AgNPs

The bioreduction of AgNO3 was noticed by visual examination
of the culture filtrate after 2 d of incubation with a color change
to deep brown, while the color change in the solution containing
gold chloride and mycelia filtrate to purple indicated biogenesis
of AuNPs (Fig. 2A).

UV–Vis wave analysis of AgNPs over the range of 200–600 nm
revealed that the surface plasmon resonance band originated at
432 nm. Absorption measurements over the range of 300–
700 nm for AuNPs produced a peak at 536 nm, coinciding to the
plasmon absorbance of AuNPs (Fig. 2B).

The size and morphology examined by TEM showed that the
formed AgNPs were monodispersed with a relatively regular
spherical structures and an average particle size of 5–37 nm.
TEM analysis of the biosynthesized AuNPs revealed that they were
polydispersive showing spherical and hexagonal structures with a
particle size range of 37–62 nm (Fig. 2C).

The crystalline quality of AgNPs was determined by the XRD
analysis that exposed the typical face-centered cubic (fcc) struc-
ture of the metal silver. The XRD spectra revealed four major Bragg
diffraction peaks at 2h values of 38.121�, 44.308�, 64.458�, and



Fig. 2. (A) Color change of mycosynthesized AgNPs and AuNPs (a) silver nitrate, (b) AgNPs, (c) A. versicolor mycelial filtrate, (d) AuNPs, and (e) gold chloride; (B) UV–Vis
absorption spectrum of biosynthesized (a) AgNPs and (b) AuNPs; (C) TEM images of (a) AgNPs and (b) AuNPs.
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77.415� that matched to the (111), (200), (220), and (311) planes of
fcc Ag, respectively. The diffraction peaks were harmonious with
the (JCPDS card No. 04–0783) standard database files, which con-
firm that the mycosynthesized AgNPs had a crystalline nature
(Fig. 3A). XRD analysis of AuNPs exhibited Bragg diffraction peaks
and planes of fcc as for AgNPs by employing (space group Fm3 m,
JCPDS File NO. 89–3697) standard database files (Fig. 3B).

The FTIR spectrum of AgNPs showed a number of different
bands including strong bands that appeared in the spectrum such
as the band centered at 2965.86 and 2903.53 cm�1 for aliphatic
CAH stretching and the strong band at 1547.36 cm�1 for carbonyl
group C@O stretching. The band centered at 1292.03 is attributed
for the CAO stretching group, while the strong band centered at
1053.73 is attributed to the S@O stretching functional group in
the sample (Fig. 4A).

The FTIR spectrum of AuNPs showed a number of different
bands including strong bands that appeared in the spectrum such
as the band centered at 2972.08 and 2900.92 cm�1 for aliphatic
CAH stretching. The strong band centered at 1053.73 was attribu-
29
ted to the S@O stretching functional group in the sample. A small
peak was observed at 3658.98 cm�1, which could be because of
the presence of a AOAH hydroxyl group. The band centered at
1596.09 cm�1 was attributed to carbonyl group C@O stretching
(Fig. 4B). These bands indicated that those functional groups were
able to bind ions of the silver and gold metals and can biosynthe-
size and capping AgNPs and AuNPs to block clustering and settle
the medium.

3.3. Impacts of AgNPs and AuNPs and Ag-AuNPs treatment on the
growth of Aspergillus flavus and its capability to produce aflatoxin B1

The impacts of AgNPs, AuNPs, and their mixture to inhibit the
outgrowth and aflatoxins B1 biosynthesis by A. flavus were
observed (Table 1 and Fig. S1-S20). The present study revealed that
the impacts of AgNPs, AuNPs, and their mixture in inhibiting the
growth and aflatoxin B1 production capability of A. flavus. The
growth inhibition was determined by dry weight, where it ranged
between 0–1.55 g at 10000–125 lg/mL AgNPs, 0–1.42 g at 10000–



Fig. 3. XRD micrograph of mycosynthesized (A) AgNPs and (B) AuNPs.
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125 lg/mL AuNPs, and 0–1.62 g at 10000–125 lg/mL Ag-AuNPs in
comparison to the control (1.73 g). Our study also revealed that the
inhibition of growth and aflatoxin B1 production capability of A. fla-
vus was directly linked to the concentrations of the nanoparticles
tested. The quantities of accumulated aflatoxin B1 decreased when
the used nanoparticles concentration increased. The growth of A.
flavus was completely inhibited at 10000 lg/mL concentration,
while no aflatoxin B1 production occurred at 10,000 and
5000 lg/mL of AgNPs, AuNPs, and their mixture, respectively.
The concentration that showed no aflatoxin B1 production was less
than those for the reduction of fungal growth. The highest concen-
tration for the inhibition of aflatoxin B1 production (99.55, 99.999,
and 99.59%) for AgNPs, AuNPs, and Ag-AuNPs, respectively, was
3000 lg/ml, whereas fungal growth was decreased significantly
at these concentrations. The lowest concentration for the inhibi-
tion of aflatoxin B1 formation (60.50, 67.33, and 23.24%) for AgNPs,
AuNPs, and Ag-AuNPs, respectively, was 125 lg/mL, whereas fun-
gal growth was reduced significantly at these concentrations
(Fig. 5A, B).
30
3.4. Antioxidant activity of AgNPs, AuNPs, and Ag-AuNPs

The mycosynthesized AgNPs exhibited satisfactory antiradical
activities as compared to BHT with inhibitions of 27.02–79.58%,
AuNPs displayed inhibitions of 40.19–80.22%, while Ag-AuNPs dis-
played inhibitions of 33.59–76.85% at the tested concentrations
(12.5–100 lg/mL) (Table 2).

4. Discussion

In this study, we attempted to synthesize AuNPs and AgNPs by
Aspergillus versicolor isolated as an endophyte from the leaves of
Pancratium maritimum, while aflatoxigenic A. flavus was isolated
from the seeds of Arachis hypogaea. Both fungi were identified on
the basis of the phenotypic and phylogenetic characteristics. The
ITS loci are the most credible regions for identifying strains at
the species level. Not surprisingly, ITS region sequencing is
reported as a powerful alternative method for accurate molecular
identification of Aspergillus strains to the species level [32].

AgNPs biosynthesis was indicated by the change in color of the
culture filtrate from faint xanthous to deep brown color, while pur-



Fig. 4. FTIR analysis of biosynthesized (A) AgNPs and (B) AuNPs.

Table 1
Effects of different concentrations of biosynthesized AgNPs, AuNPs, and their mixture on the growth of A. flavus and accumulation of AFB1.

NPs conc.
(lg/mL)

AgNPs AuNPs Ag-AuNPs

Growth AFB1 Growth AFB1 Growth AFB1

Dry weight (g) Quantity
(ng/100 ml)

Reduction (%) Dry weight (g) Quantity
(ng/100 ml)

Reduction (%) Dry weight (g) Quantity
(ng/100 ml)

Reduction (%)

Control 1.73 ± 0.02a 8787 0 1.73 ± 0.02a 8787 0 1.73 ± 0.02a 8787 0
10,000 0.00 ± 0.00p 0 100 0.00 ± 0.00p 0 100 0.00 ± 0.00p 0 100
5000 0.49 ± 0.01n 0 100 0.38 ± 0.01o 0 100 0.49 ± 0.01n 0 100
3000 0.67 ± 0.02 k 39.6 99.55 0.62 ± 0.01 l 0.11 99.999 0.57 ± 0.01 m 36 99.59
1000 0.85 ± 0.01j 91.5 98.96 0.82 ± 0.01j 42.3 99.52 0.67 ± 0.01 k 247 97.19
750 0.97 ± 0.01 h 274 96.88 0.92 ± 0.01i 230 97.38 0.83 ± 0.02j 797 90.93
500 1.09 ± 0.01f 308 96.49 1.08 ± 0.01f 271 96.92 1.02 ± 0.01 g 1280 85.43
250 1.45 ± 0.01d 1414 83.91 1.20 ± 0.01e 859 90.22 1.19 ± 0.03e 6138 30.15
125 1.55 ± 0.03c 3471 60.50 1.42 ± 0.01d 2871 67.33 1.62 ± 0.02b 6745 23.24

The data are expressed as mean value of three replicates ± SE. Values followed by different letters are significantly different at p < 0.05.
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Fig. 5. Effects of different concentrations of biosynthesized AgNPs, AuNPs, and their mixture on (A) the outgrowth of A. flavus and (B) AFB1 production.

Table 2
DPPH radical scavenging activities (%) of mycosynthesized AgNPs, AuNPs, and Ag-AuNPs.

Test NPs Concentration (lg/mL)

1000 500 300 100 75 50 25 12.5

AgNPs 79.58 ± 0.36b 76.18 ± 0.30c 65.87 ± 0.17c 60.14 ± 0.18c 56.98 ± 0.29c 48.08 ± 0.26c 41.68 ± 0.60c 27.02 ± 0.64c

AuNPs 80.22 ± 0.22b 76.82 ± 0.08b 69.64 ± 0.18b 67.22 ± 0.21b 64.05 ± 0.17b 60.82 ± 0.01b 56.28 ± 0.24b 40.19 ± 1.13b

Ag-AuNPs 76.85 ± 0.97c 69.17 ± 0.07d 65.13 ± 0.52c 58.49 ± 0.16d 55.59 ± 0.50d 44.68 ± 0.19d 32.58 ± 0.53d 33.59 ± 0.33d

BHT 94.17 ± 0.23a 90.57 ± 0.17a 83.96 ± 0.54a 78.87 ± 0.37a 73.21 ± 0.51a 69.17 ± 0.07a 65.13 ± 0.52a 60.14 ± 0.18a

The data are expressed as mean values of three replicates ± SE. Values followed by different letters are significantly different at p < 0.05.

H. Sheikh and M.F. Awad Electronic Journal of Biotechnology 60 (2022) 26–35
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ple color mycelial filtrate was indicative of AuNPs biosynthesis;
these observations are in line with those reported by earlier studies
[39,40]. The bioreduction of silver ions into silver-NPs is monitored
by extracellular enzymes secreted by fungi [41] and in the case of
bioreduction of gold ions [42].

UV–Vis spectroscopic analyses of AgNPs revealed the surface
plasmon resonance band at 432 nm, while for AuNPs, surface plas-
mon absorbance peak was observed at 536 nm. These observations
are in accordance with previous studies, where UV–visible absor-
bance peak at 420 nm was observed for the fungal filtrate contain-
ing AuNPs [43,44], which reported that mycosynthesized gold
nanoparticles exhibited a peak corresponding to 550 nm in the
absorption spectrum. The size and morphology analysis of AgNPs
and AuNPs by TEM showed that AgNPs formed were monodis-
persed, showing relatively stable spherical structures with an aver-
age size of 5–37 nm, while AuNPs were polydispersive, showing
spherical and hexagonal structures with a particle size range of
37–62 nm. These observations concur with Elgorban et al. [45]
who synthesized AgNPs by using a soil isolate of Aspergillus versi-
color, which were characterized as spherical shape nanoparticles
with the size ranging from 5 to 30 nm, and with Abd El-Kareem
and Zohri [40] who analyzed TEM images of mycosynthesized
AuNPs and showed that they were well dispersed with spherical,
pentagonal, and hexagonal shapes covering a size range of 5–
30 nm.

Next, XRD analyses of the newly formed AgNPs and AuNPs were
conducted. The crystalline quality of AgNPs was confirmed by XRD
analyses, which revealed the typical fcc structure of the metal sil-
ver, while AuNPs exhibited Bragg diffraction peaks and planes of
fcc in XRD analyses.

We also performed FTIR analyses of AgNPs and AuNPs to ascer-
tain the major functional groups bound to the AgNPs and AuNPs.
Several different bands were observed for both AgNPs and AuNPs
at different wavelengths. For AgNPs, the band centered at
2965.86 and 2903.53 cm�1 indicated aliphatic CAH stretching; a
strong band at 1547.36 cm�1 represented carbonyl group C@O
stretching, while bands centered at 1292.03 and 1053.73 cm�1

were attributed to the CAO stretching and S@O stretching func-
tional groups in the sample. Similarly, for AuNPs, the band cen-
tered at 2972.08 and 2900.92 cm�1 showed aliphatic CAH
stretching, while the band at 1053.73 cm�1 is linked to a S@O
stretching. The other functional groups identified in the sample
were AOAH hydroxyl group and carbonyl group C@O based on
the presence of a weak band centered at 3658.98 cm-1 (for hydro-
xyl group) and a band centered at 1596.09 cm�1 (for carbonyl
group). These bands indicated that these functional groups are bet-
ter able to bind ions of the silver and gold metals and can biosyn-
thesize and cap AgNPs and AuNPs to block clustering and settle the
medium. According to an earlier report [46], AgNPs are bound to
proteins through free carboxylic or amine groups, whilst the inci-
dence of a peak at C@O stretching confirms the existence of car-
boxylic groups in the substances that are attached to AuNPs. The
role of extracellular proteins in the biosynthesis of AuNPs is sup-
ported by the presence of standard FTIR spectra of proteins and
peptides [47].

The effectiveness of the AgNPs, AuNPs, and their mixture to
inhibit the growth and aflatoxin B1 synthesis ability of A. flavus
was analyzed next. Our data clearly show that the nanoparticles
inhibited the growth of A. flavus and aflatoxin B1 in a
concentration-dependent manner. These results were expected
because when AgNPs come in contact with the fungal plasma
membrane, they perforate the membrane, resulting in the seepage
of ions and low molecular weight compounds. Subsequently, the
silver-NPs then disrupt the respiratory chain, which is then fol-
lowed by halting of cell division, ultimately resulting in cell death
[48]. After AgNPs treatment, the fungal genome loses its capacity
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to replicate, and transcription and adenine triphosphate synthesis
could be promoted [49]. When A. flavus is treated with AgNPs, the
expression levels of omt-A gene, which encodes enzymes encom-
passed in the aflatoxins biosynthesis pathway, are reduced [50].
The antimicrobial specificity of the nanoparticles is also correlated
to their total surface area; thus, the smaller the particles in size, the
quicker will be their penetration in microbial cells [51].

Antioxidants are vital in decreasing the intracellular levels of
reactive oxygen species, which lowers the intracellular oxidative
level that in turn affects the signaling of the aflatoxin biosynthesis
pathway, followed by significant suppression of aflatoxins produc-
tion by A. flavus. In our study, at the concentrations between 12.5–
100 lg/mL, AgNPs showed antiradical activity of 27.02–79.58%,
while AuNPs and Ag-AuNPs showed antiradical activity of 40.19–
80.22% and 33.59–76.85%, respectively. The functional groups of
the biomolecules attached to the particle’s surface could be
accountable for the antioxidant potency of the biofabricated AgNPs
through their bioreductant capacity [52]. Antioxidants exerted a
significant influence on AFB1 accumulation by A. flavus [53]. Phy-
tosynthesized silver, gold, and silver-gold nanoparticles displayed
satisfactory DPPH-scavenging activities that were dose-
dependent at the tested concentrations [38].

5. Conclusions

In the present study, Aspergillus versicolor was used to biosyn-
thesize AgNPs and AuNPs. Mycosynthesized NPs were character-
ized by UV–vis spectroscopy, XRD, TEM, and FTIR. Data obtained
from the present investigation suggest that mycosynthesized
AgNPs, AuNPs, and Ag-AuNPs exerted antifungal and antiaflatoxi-
genic ability against A. flavus and antioxidant activity using DPPH
assay. More studies are required to estimate the influence and
application of mycosynthesized metallic nanoparticles against dif-
ferent mycotoxigenic fungi, particularly for food products.
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