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Background: The expression of miR-141-3p in many malignant tumors has been verified. Nevertheless,
the relationship between ovarian cancer and miR-141-3p remains undetermined. Therefore, further
exploration is required.
Results: According to data from 100 samples, the final results of RT-qPCR showed that miR-141-3p was
highly expressed in ovarian cancer. Furthermore, miR-141-3p was able to distinguish ovarian cancer cells
from ovary tissues. The most significant Kyoto Encyclopedia of Genes and Genomes pathway, was regu-
lation of lipolysis in adipocytes in ovarian cancer. The expression of PIK3R1 was negatively correlated
with miR-141- 3p. PIK3R1 has a combing site with miR-141-3p.
Conclusions: This study examined the expression levels and mechanism of miR-141-3p in ovarian cancer
for the first time. The results suggested that miR-141-3p may promote the occurrence of ovarian cancer
by down-regulating PIK3R1.
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Table 1
RT-qPCR reaction system for detecting miR-141-3 expression in various tissues.

Reaction System Components Volume (ll)

ddH2O 9
TB Green Advantage Premix (2X) 12.5
ROX Dye (50X) 0.5
miR-141-3p or U6 forward primer (10 lM) 0.5
mRQ 30 or U6 reverse primer (10 lM) 0.5
cDNA 2.0
Total Volume 25
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1. Introduction

Ovarian cancer (OV) is one of the most common gynecological
malignancies worldwide, and its mortality ranks first among all
kinds of gynecological cancer [1]. Globally, about 313,959 new
cases of OV are diagnosed each year, and 207,252 patients die of
OV [2]. Moreover, the incidence and mortality of OV have increased
each year [2,3]. The overall survival (OS) rate of OV is low, around
40% [4], and the incidence rate of OV is younger than before [4].
With lacking of peritoneal coverage on the surface of ovaries, OV
can metastasize to the abdominal cavity at an early stage, which
is also one of the reasons for the poor prognosis of patients with
OV [5]. As OV is characterized by gynecological malignant tumors,
its occurrence not only affects the patient’s quality of life and
health but also the patient’s future fertility [6,7,8,9,10]. OV occurs
in a multi-step process that is affected by numerous factors,
including DNA repair, oncogene activation, and abnormal cell
apoptosis [11,12]. For instance, Wnt/b-catenin pathway involves
in tumorigenesis of OV by promoting the self-renewal of cancer
stem cells [11]. Some researchers believe that changes in the tumor
microenvironment, such as changes in the biological signal path-
way and extracellular matrix, are also key factors affecting the
occurrence and progression of OV [13,14,15,16]. A variety of
genetic and epigenetic abnormalities also exist in different OV tis-
sues [17]. Furthermore, some studies reported that some transcrip-
tion factors participated in the tumorigenesis of OV [18].

MicroRNA (miRNA), a class of short non-coding RNA molecules,
participate in the post-transcriptional regulation of gene expres-
sion [19]. Currently, the role of miRNAs in cancers has received
increasing attention [20,21,22,23]. For instance, miRNA-489 was
demonstrated to involve in the regulation of proliferation and
apoptosis of tumor cells by serving as a tumor suppressor, and
can affect the sensitivity of chemotherapy [24]. Up-regulation of
miR-23a-5p promoted renal cell carcinoma cell proliferation,
migration and invasion and inhibited apoptosis [25]. Similarly,
miRNA-194 contributed to promotion of OV cell growth, migration
and invasion [26]. Obviously, in-depth exploration of the role of
miRNAs in cancer is of great significance for exploring the mecha-
nism of cancer occurrence and development. Among numerous
miRNAs, the effect of the miR-200 family (including miR-200a,
miR-200b, miR-200c, miR-429 and miR-141) in multiple cancers
aroused much attention [27]. It was reported that the miR-200
family regulates epithelial-mesenchymal transition (EMT) and
can reverse EMT-related drug resistance [28]. The study by Bin
Wen et al. [29] also indicated that miR-200 members were
expressed differently in various cancers and had an impact on
the EMT process [29,30]. MiR-141-3p, a member of the miR-200
family, is a mature miRNA processed from the 30-end arm of
miR-141 precursor [31]. Numerous studies have shown that the
deviant expression of miR-141-3p is closely related to the occur-
rence, development, and drug-resistance of cancer [32,33,34]. In
different cancers, miR-141-3p can participate in tumorigenesis by
controlling the expression level of target genes. The promoting role
of miR-141 has been reported in the occurrence of non-small cell
lung cancer [35], small cell lung carcinoma [36], and prostate car-
cinoma [37]. Both in vivo and in vitro experiments have found that
miR-141 can interact with human umbilical vein endothelial cells
through the exosomes of packaged small cell lung cancer cells.
After human umbilical vein endothelial cells internalize miR-141,
miR-141 starts the miR-141/klf12 pathway. This pathway targets
and reduces the expression of klf12, promoting the proliferation,
invasion, and migration of human umbilical vein endothelial cells
and accelerating the growth of small cell lung carcinoma [38].
Since miR-141 is remarkably up-regulated in prostate cancer, the
combination of miR-141, miR-21, and miR-375 is often used as a
potential prognostic tool for prostate cancer [38]. Moreover,
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miR-141 can reduce the survival time of patients with bladder can-
cer and promote the invasion and recurrence of cancer cells by reg-
ulating hormones and inducing the growth of LNCaP cells [39].
However, miR-141 can also inhibit tumorigenesis. For example, it
can inhibit the expression of BMI 1 in nasopharyngeal carcinoma
cells, especially in metastatic tumor cells, thereby restraining the
growth and metastasis of nasopharyngeal carcinoma [40]. In pan-
creatic cancer, miR-141, as one of the candidate miRNAs, has the
strongest negative regulatory effect on NRP-1. It can bind to the
30-untranslated region (30 UTR) of NRP-1 and inhibit its formation,
thus counteracting the activation effect of the TGF-b pathway and
continuously inhibiting the epithelial mesenchymal transition of
pancreatic cancer cells [41].

Current studies related to miR-141-3p and OV have only
reported the phenomenon of high expression of miR-141-3p,
which inhibits the cisplatin resistance, invasion, and metastasis
of OV [42,43]. The current research has not studied the relationship
between expression levels of miR-141-3p and OV, and the latent
molecular mechanism of miR-141-3p in OV is still unclear. To
explore this relationship and mechanism, this study examined
the expression of miR-141-3p in OV using RT-qPCR and public
databases. Furthermore, the potential target genes of miR-141-3p
were predicted, and the mechanism of miR-141-3p in the tumori-
genesis of OV was revealed for the first time.
2. Materials and methods

2.1. Total RNA extraction and detection of miR-141-3p expression
levels by RT-qPCR

The OV tissues and non-cancer tissues were selected by two
pathologists. All samples were collected from the Second Affiliated
Hospital of Guangxi Medical University. The experiment has been
approved by the medical ethics committee of the Second Affiliated
Hospital of Guangxi Medical University with the approval number
of 2019-KY(0104). Informed consent was obtained from all partic-
ipants. According to the manufacturer’s instructions, an RNA kit
was used to extract the total RNA of the sample tissues. Then, a
micro nucleic acid detector, which was calibrated through diethyl-
procarbonate (DEPC)-treated water, was used to determine the
quality and concentration of the total extracted RNA.

The reverse transcription of the qualified total RNA (A260/A280
ratio range of 1.8�2.1) was executed using the Mir-XTM miRNA
First-Strand Synthesis Kit (TAKARA, USA). The expression levels
of miR-141-3p in the sample tissues were determined using RT-
qPCR and calculated with the 2-DDCq method. The specific primer
sequence of miR-141-3p was GCACACTGTCTGGTAAAGATGGAA,
and the general primer sequence was provided by the kit. The reac-
tion system is shown in Table 1.

2.2. Data mining of miR-141-3p expression levels in the GEO database

As of December 10, 2019, all expression profiles of miR-141-3p
were obtained from the Gene Expression Omnibus (GEO, https://

https://www.ncbi.nlm.nih.gov/gds/


Table 2
Microarray of OV gene in geo database.

Category Accession Year Author Country Platforms Cancer Normal

OV-miRNA GSE119056 2019 Dong S China GPL21572 6 3
GSE83693 2017 Nam EJ South Korea GPL22079 16 4
GSE53829 2014 Ruo-Ying T China GPL18138 45 14
GSE14985 2009 Navon R Israel GPL8227 3 3

Fig. 1. RT-qPCR was used to examine the expression of miR-141-3p in normal ovarian and ovarian cancer tissues.

Fig. 2. Expression of miR-141-3p in OV miRNA microarrays.
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www.ncbi.nlm.nih.gov/gds/) database. To explore the expression
of miR-141-3p in OV samples, the following retrieval method
was used to obtain miRNA transcriptome and microarray data for
OV: (ovarian OR ovary) AND (cancer OR carcinoma) AND (miRNA
OR microRNA). The screening flow chart is shown in Fig. S1.

According to the inclusion and exclusion criteria, the dataset
was selected, and the data of the human transcriptional group
were tested by chip, microarray, or RT-qPCR. The dataset
included three or more cancer groups and normal control
groups without any treatment. Finally, four OV chips conform-
ing to the inclusion criteria were obtained (Table 2). After
downloading the chips, the gene expression profiles of each
chip were combined, and the data were normalized for further
analysis using log2.
2.3. Comprehensive evaluation of miR-141-3p expression in OV

To enhance the reliability of the results, the data obtained by
RT-qPCR were combined with the datasets obtained from the
GEO database for integrated analysis. The receiver operating char-
acteristic (ROC) curves were drawn using GraphPad Prism (v8.3.0).
Stata (v15.1) software was used for comprehensive analysis of the
dataset, as follows:

1. An standardized mean difference (SMD) forest map was exhib-
ited to estimate the expression levels of miR-141-3p
comprehensively.

2. Egger’s funnel map was drawn to verify whether the obtained
data had publication bias.

3. The summary ROC (sROC) curve, sensitivity, specificity, positive
likelihood ratio, negative likelihood ratio, diagnostic score, and
OR value were shown in forest maps to judge the identification
value of miR-141-3p in OV.

If the heterogeneity test found that heterogeneity was low
(I2 < 50%, p > 0.05), the fixed effect model was chosen. Otherwise,
the random effect model was utilized.

In addition, we collected 70 OV patients’ clinicopathological
parameters, and used Student’s t-test method to determine the
relationship between the miR-141-3p and clinicopathological
parameters.
Fig. 3. (A) Forest map of miR-141-3p expression in ovarian cancer patients by
integrated analysis. (B) Publication bias. (C) Evaluation of miR-141-3p in the
diagnosis of OV by SROC curve.
2.4. Recognition of candidate miR-141-3p target genes

The target genes of miR-141-3p were screened using 11
online tools, including mirdb, miRanda, DIANA, microT-CDS, miR-
map, miRwalk, miRNAmap, PITA, RNA22, PicTar, TargetScan v7.2,
and TargetMiner. The genes that overlapped at least three times
were selected as the miR-141-3p target genes. The microarray of
the OV expression profile was downloaded from the GEO data-
base. The affy package in R software was used for robust
multi-array average (RMA) processing and background
correction.

The gene chips from the same platform were combined, and the
batch effect was removed using the Combat function of the sva
package. At the same time, the RNA-sequencing data from the Can-
cer Genome Atlas (TCGA) and the Genotype-Tissue Expression
(GTEx) were combined, and the batch effect was removed using
the Combat function of the sva package. Then, the SMD of each
gene expression was calculated, and the low expression genes
were screened according to SMD < 0 and 95% CI, excluding 0.
Finally, the low expression genes of OV were obtained. Then, the
low expression genes were overlapped with the target genes using
Funrich (v3.1.3) [44], and the candidate miR-141-3p target genes
were obtained.
17
2.5. MiR-141-3p target genes and enrichment analysis

Enrichment of the candidate miR-141-3p target genes with
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Gen-
omes (KEGG) was analyzed using KOBAS 2.0 (https://kobas.cbi.pk
u.edu.cn/kobas3/?t=1) [45]. GO annotation analysis histogram
and KEGG enrichment analysis bar plots were drawn using the
online drawing tool Hiplot. In addition, the Human Protein Atlas
(THPA, https://www.proteinatlas.org/) was used to verify the pro-
tein expression level of the genes enriched in the KEGG pathway
with the highest score in OV. In order to further explore the expres-
sion of miR-141-3p target gene in OV tissues, we verified the
expression level of related target genes in OV. Pearson correlation
analysis was applied to verify the correlation between miR-141-3p

https://www.ncbi.nlm.nih.gov/gds/
https://www.proteinatlas.org/


Fig. 4. Sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic score, odds ratio.
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Fig. 5. (A) Venn diagram: intersection of miR-141-3p potential target gene and low
expression gene in ovarian cancer mRNA microarray. (B) GO enrichment analysis of
miR-141-3p target gene. (C) KEGG analysis of miR-141-3p target gene.
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and target gene, and the online tool microT-CDS was utilized to
find the combining site of miR-141-3p of the target gene. Sche-
matic diagram was drawn to display the molecular mechanism
of miR-141-3p.
3. Results

3.1. Expression status of miR-141-3p in OV samples by RT-qPCR

The expression of miR-141-3p in 70 OV groups and 30 normal
control groups was examined using RT-qPCR. The scatter plots
showed that the expression levels of miR-141-3p in OV were sig-
nificantly higher than those in the group of normal ovarian sam-
ples (p < 0.0001). The ROC curve of miR-141-3p in OV indicated a
favorable discriminatory ability (AUC = 0.974, p < 0.001, Fig. 1).
19
3.2. Integrated study

Four microarrays from the GEO database were screened, namely
GSE119056, GSE83693, GSE53829, and GSE14985. Among them,
the expression of miR-141-3p in OV samples from GSE119056,
GSE83693, and GSE14985 was higher than that in normal tissues.
The difference in miR-141-3p expression between the OV samples
and the normal ovarian samples from GSE83693 and GSE14985
was statistically significant (p < 0.05). However, GSE53829 showed
the opposite outcome (p < 0.0001, Fig. 2). Because I2 = 0.919, a ran-
dom effect model was applied to analyze the outcomes of GEO
chips integrally. The forest plot showed that miR-141-3p was
expressed at a high level in OV (SMD: 0.95; 95% CI: �0.64–2.53,
Fig. 3A), and the Egger’s test exhibited no publication bias
(p = 0.307, Fig. 3B). The AUC of sROC in each group was 0.97
(95% CI = 0.96–0.98, Fig. 3C). The values for sensitivity, specificity,
diagnostic score, negative likelihood ratio (NLR), positive likeli-
hood ratio (PLR) and odds ratio (OR) were 0.95 (95% CI: 0.89–
0.99, p < 0.05), 0.97 (95% CI: 0.03–1.00, p < 0.001), 6.49 (95% CI:
0.54–12.44, p = 0.27), 0.05 (95% CI:0.01–0.16, p < 0.001), 32.03
(95% CI: 0.04–24173.55, p < 0.001), and 658.37 (95% CI: 1.72–
250000, p < 0.001), respectively (Fig. 4). All these values implied
that miR-141-3p could distinguish OV cells from non-cancer cells.
3.3. Correlations between miR-141-3p expression and
clinicopathological features

We analyzed the relationship between the expression level of
miR-141-3p and clinicopathological features of 70 patients, includ-
ing grade and clinical stage. The results indicated that there was no
significant difference between the expression level of miR-141-3p
and clinical stages or grades (p > 0.05, Fig. S2).
3.4. The candidate miR-141-3p target genes

In total, 1,625 potential target genes were obtained after
screening. To obtain the target genes of miR-141-3p correctly,
the 1,625 genes were crossed with 988 low-expressed genes
obtained from the analysis of an OV mRNA chip (Fig. 5A). A total
of 119 overlapping genes were selected as candidate target genes
of miR-141-3p for further exploration.
3.5. Potential mechanism of miR-141-3p in OV

To explore the potential mechanisms of miR-141-3p and its tar-
get genes, KOBAS 2.0 was used to analyze 119 candidate target
genes. These genes were input into KOBAS 2.0 to obtain GO and
KEGG enrichment analysis results. Using p < 0.05 as the screening
condition, the top 10 items were selected to draw the histogram
(Fig. 5B). The results of GO annotation illustrated that the top three
processes that the targeted miR-141-3p genes were involved in
were protein binding, plasma membrane, and DNA-binding tran-
scription factor activity (RNA polymerase II-specific).

In terms of KEGG analysis, the target genes were enriched in the
regulation of lipolysis in adipocytes pathway (Fig. 5C). According to
the THPA database, the expression levels of PIK3R1 (Fig. 6), IRS1
(Fig. S3), and PRAKCB (Fig. S4) kept a low expression status in OV
compared to ovarian tissues. This trend was not found for PTGS2
or GNAI1. Furthermore, no protein expression data for NPY1R in
OV tissues were found in the THPA database. These results sug-
gested that miR-141-3p may down-regulate IRS1, PIK3R1, and
PRAKCB, which may lead to the abnormality of the regulation of
lipolysis in adipocytes pathway, thus inducing the occurrence
and development of OV.



Fig. 6. (A) Expression of PIK3R1 protein in ovary cystadenocarcinoma (Female, aged 73, patient ID: 1844, antibody CAB004268, low staining). (B) Expression of PIK3R1
protein in normal ovary (Female, aged 33, patient ID: 2159, antibody CAB004268, medium staining).
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3.6. Validation of PIK3R1 expression in OV

Compared to the non-OV ovarian tissues, the expression level
of PIK3R1 in OV tissues was observably lower (SMD = �1.45,
95% CI: �2.63 – �0.26, Fig. 7A). The funnel plot showed no
obvious publication bias (P = 0.448, Fig. 7B). The AUC value of
sROC was 0.94, which indicated that PIK3R1 had a favourable
discriminatory ability between OV and non-OV tissues (95%
CI = 0.92–0.96, Fig. 7C). Through Pearson correlation analysis,
we found that PIK3R1 was negatively correlated with
miR-141- 3p with the Pearson’s r = �0.120 (P < 0.05, Fig. 8A).
Moreover we identified that a 6mer combining site exited
between the 30-UTR of PIK3R1 and miR-141-3p, which was an
20
exact match to positions 2 to 7 of the mature miRNA
(Fig. 8B). The hypothesis diagram of the latent mechanisms of
miR-141-3p in OV is displayed in Fig. 8C. The above results
demonstrated that miR-141-3p may participate in the occur-
rence of OV by down-regulating PIK3R1.
4. Discussion

Previously, the few research studies on the relationship
between miR-141-3p expression levels and OV examined only
the function of miR-141-3p expression level changes in cisplatin
resistance [42] and cancer cell metastasis and invasion [43]. These



Fig. 7. (A) Forest map of PIK3R1 expression in ovarian cancer patients by integrated analysis. (B) Egger’s funnel map. (C) Evaluation of PIK3R1 in the diagnosis of OV by SROC
curve.
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studies did not report the role of miR-141-3p expression in the
occurrence of OV.

Through the comprehensive study of OV (n = 144) and non-OV
(n = 54) samples, and by calculating SMD, this study found that
miR-141-3p was overexpressed in OV tissues. Additionally, it
investigated the ability of miR-141-3p to distinguish OV from
non-OV, as well as the prognostic significance of miR-141-3p
expression in OV patients. Furthermore, the potential molecular
mechanisms of miR-141-3p in OV were also explored for the first
time via GO and KEGG signaling pathway analyses.

As a member of the miR-200 family, miR-141-3p plays a key
role in the regulation of epithelial mesenchymal transition [46]
and angiogenesis [47], and its expression levels vary in different
types of tumors. For example, miR-141-3p is up-regulated in pros-
tate cancer [32], esophageal cancer [34], breast cancer [33] and
uterine cervical cancer [48]. In contrast, miR-141-3p levels showed
a decreasing trend in colorectal cancer [49], non-small cell lung
carcinoma [50], papillary thyroid cancer [51], gastric cancer [52]
and hepatocellular carcinoma [53]. However, the difference of
miR-141-3p expression between OV and non-OV has not been
comprehensively reported before.

In this study, RT-qPCR was first applied to identify the mRNA
expression levels of miR-141-3p in OV. Using the results of RT-
qPCR combined with gene chip data, the study found that miR-
141-3p was remarkably overexpressed in OV. This differential
21
expression of miR-141-3p in OV tissues was consistent with the
results of previous studies. In terms of the clinical significance of
miR-141-3p, the present study also found that the expression
levels of miR-141-3p can be used as an indicator to distinguish
OV and normal ovarian tissues.

The clinical significance of miR-141-3p was attractive. Thus,
there were a large number of studies revealing the clinicopatholog-
ical value of the aberrant miR-141-3p in multiple malignant
tumors. For instance, one study found that the low expression of
miR-141-3p was associated with TNM stage and lymph-node
metastasis in non-small cell lung cancer patients [50]. Another
study discovered that the elevated expression of miR-141-3p was
related to the T stage and grade of hepatocellular carcinoma
patients [54]. Whereas, the present study showed that the expres-
sion of miR-141-3p had no significant correlation with the clinico-
pathological parameters of OV, which may be due to the small
sample size, and it still needs further exploration.

The mechanisms of miR-141-3p in OV remain undetermined.
However, KEGG enrichment analysis found that miR-141-3p may
promote the occurrence of OV by regulating lipolysis in adipocytes
pathway, which was consistent with previous studies [55,56].
Studies have shown that abnormal decomposition of adipocytes
provides fatty acids as energy for tumor cells, thus promoting the
proliferation of tumor cells [56]. Legion studies have shown that
aberrant lipolysis is associated with numerous malignant tumors,



Fig. 8. (A) Pearson correlation analysis between miR-141-3p and PIK3R1. (B) Combining site of PIK3R1 to miR-141-3p. (C) The mechanism of miR-141-3p in OV.
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including breast cancer [57,58] and prostate cancer [59]. Among
the genes that are involved in the regulation of lipolysis in adipo-
cytes pathway, the protein expression of IRS1, PIK3R1, and PRAKCB
in OV was lower than that in normal tissues. PIK3R1 belongs to the
PI3K family and encodes three proteins: p85a, p50a, and p55a. A
tremendous number of studies have shown that the low expres-
sion of PIK3R1 is relevant to the occurrence of multitudinous can-
cers [60,61,62,63,64]. This is because p85a decreases when PIK3R1
is down-regulated, which leads to the activation of the Akt signal-
ing pathway, which mediates tumorigenesis [65]. Interestingly, our
study firstly demonstrated that the expression of miR-141-3p was
significantly negatively correlated to PIK3R1 in OV, and that miR-
141-3p may down-regulate the expression of PIK3R1 via combin-
ing to the 30-UTR of PIK3R1. Therefore, this study suggested that
miR-141-3p may promote the occurrence of OV by means of
down-regulating its underlying target gene, PIK3R1.

5. Conclusions

In the present work, the expression and oncogenic role of miR-
141-3p in OV were comprehensively analyzed through experi-
ments and high-throughput databases. Although limitations may
have existed due to the finite quantity of mRNA chips included
in the analysis and the different subtypes of samples analyzed by
different research groups, the study preliminarily showed that
miR-141-3p is overexpressed in OV tissues. Moreover, the study
also illustrated that miR-141-3p may accelerate the tumorigenesis
and development of OV by targeting and down-regulating the
expression of PIK3R1. This finding provides new insight into the
mechanism of miR-141-3p in the tumorigenesis and development
of OV, which is worthy of further validation and investigation.
22
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