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Background: Osteoarthritis (OA) is a form of arthritis due to degradation of articular cartilage. OA is asso-
ciated with stiffness, joint pain, and dysfunction, affecting adults worldwide. Galangin is a bioactive fla-
vonoid that exerts several therapeutic and biological activities. Anti-hyperglycemic, anti-inflammatory,
anti-cancer, and anti-apoptotic activities of galangin have been reported in several studies. In the present
study, rats were divided into normal control, OA (control), galangin 10 mg/kg (low-dose), galangin
100 mg/kg (high-dose), and celecoxib 30 mg/kg (positive control) groups. All doses were administered
orally for 14 consecutive days. The urinary type II collagen (mCTX-II) level as well as reactive oxygen spe-
cies, tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6, superoxide dismutase, catalase, lipid
peroxidation, reduced glutathione, and glutathione peroxidase levels were measured. In addition, the
CTX-II mRNA and protein expression levels were measured.
Results: Galangin supplementation significantly reduced the mCTX-II level compared with controls.
Galangin treatment significantly reduced reactive oxygen species, lipid peroxidation, interleukin-1 beta,
interleukin-6, and tumor necrosis factor-alpha levels, but increased catalase, superoxide dismutase, glu-
tathione peroxidase, and reduced glutathione levels. Galangin treatment significantly reduced the CTX-II
mRNA and protein expression levels. The low CTX-II level in tissue indicated the inhibition of cartilage
degradation.
Conclusions: In summary, supplementation with galangin was effective against OA. The identification of
potential therapeutic agents that inhibit inflammation may be useful for the management and prevention
of OA.
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1. Introduction

Osteoarthritis (OA) is a form of arthritis due to degradation of
articular cartilage [1]. OA is associated with stiffness, joint pain,
and dysfunction, affecting adults worldwide [2]. Allen et al. [3]
reported that joint injury, genetic factors, and development of
abnormal limb are the main causes of OA. Symptoms usually
develop gradually and affect the activities of daily living [4].
Researchers have reported that mechanical stress and inflamma-
tion (low-grade) induce OA [5]. McAlindon et al. [6] reported that
regular exercise and pain medications are helpful for the treatment
of OA. Although several advances have been made in drug discov-
ery for the treatment of OA, successful therapies and drugs are not
yet available [7]. In the present study, whether symptomatic relief
could inhibit the primary etiology that causes the severe articular
structure damage in OA was investigated.

Plants, food, and beverages act as potential biological and ther-
apeutic agents in traditional and modern clinical treatments [8].
Natural flavonoids are widely present in several plants and known
to exert various therapeutic activities such as anti-cancer, anti-
diabetic, anti-hypertensive, and anti-hepatotoxic effects
[9,10,11,12,13]. Galangin is a bioactive flavonoid possessing sev-
eral therapeutic and biological properties [14]. Several researchers
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have reported anti-hyperglycemic, anti-inflammatory, anti-cancer,
and anti-apoptotic activities of galangin [15,16,17]. Fang et al. [18]
have reported the chemopreventive effect of galangin against hep-
atocellular carcinoma. Huang et al. [19] have reported the anti-
cancer activity of galangin through p53-dependent pathway in
ovarian cancer. Xuan et al. [20] have reported the protective effect
of galangin against acute colitis through the modulating gut micro-
biota and activating autophagy. Aladaileh et al. [14] have reported
the therapeutic effect of galangin against oxidative damage and
apoptosis in hepatotoxicity induced rats. Researchers have
reported the effect of galangin on the mRNA expression and activ-
ities of seven CYP450, and DPP-4 inhibitory effect of galangin, and
improves glucose uptake in skeletal muscles [21,22]. Patil et al.
[23] have reported the effect of galangin loaded galactosylated
pluronic F68 polymeric micelles for liver targeting. Yang et al.
[24] have reported the inhibitory effect of galangin against MMP-
9 expression in SK-N-SH cells. Sulaiman [25] have reported the
anti-proliferative effect of galangin in HCT-116 cells. Kale and
Namdeo [26] reported the anti-arthritic activity of galangin in
arthritis-induced rats. Fu et al. [27] reported the protective effects
of galangin against human rheumatoid arthritis via downregula-
tion of the NF-jB/NLRP3 pathway. Thus, in the present study, the
therapeutic effects of galangin against OA were analyzed in
Sprague-Dawley rats.
2. Materials and methods

2.1. Rats

Sprague-Dawley rats (190–210 g) were obtained from the ani-
mal house of Shanghai Jiao Tong University Affiliated Sixth People’s
Hospital (No. 600, YiShan Road, Shanghai 200233, People’s Repub-
lic of China). All rats were kept in polycarbonate cages under 12-h
light/12-h dark and standard atmospheric conditions. All rats had
free access to food and water. Each experiment was performed fol-
lowing the guidelines for the care and use of laboratory animals
and institutional guidelines.

2.2. Induction of OA

Monoiodoacetate (MIA) was used for the induction of OA.
Briefly, the rats were anesthetized with isoflurane and 3 mg/kg
of MIA in 50 mL normal saline was injected into the intra-
articular pocket of the left femorotibial joint using a 26 G needle.
All rats were carefully monitored daily for abnormal swelling and
OA was established 7 d after MIA injection [7].

2.3. Experimental groups

The 30 male rats were randomly divided into five groups: nor-
mal control (NC), OA (control), galangin 10 mg/kg (low-dose),
galangin 100 mg/kg (high-dose), and celecoxib 30 mg/kg (positive
control). The doses were administered orally for 14 consecutive
days. Each group contained six rats.

2.4. Enzyme-linked immunosorbent assay (ELISA)

The urinary type II collagen (mCTX-II) levels were measured
using an enzyme-linked immunosorbent assay (ELISA) kit accord-
ing to the manufacturer’s protocol. Briefly, the rat urine was col-
lected, kept on ice, and diluted at a 1:3 ratio using sample
diluent. Then, 100 mL of standards and samples were added to
CTX-II antibody pre-coated 96-well plates and incubated for
120 min at room temperature. Next, 100 mL of detection reagent
was added to all wells and incubated for 60 min. Then, the solution
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was discarded, and samples were incubated with blocking solution
for 60 min. Next, wells were incubated with substrate for 30 min
followed by addition of 50 mL stop solution; absorbance was mea-
sured at 450 nm [7].

2.5. Biomarkers

At the end of the treatment, femorotibial joints were carefully
dissected, homogenized, centrifuged, and supernatant collected.
Reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-
a), interleukin-1 beta (IL-1b), and IL-6 levels were measured in
the supernatant [28]. In addition, superoxide dismutase (SOD),
catalase, lipid peroxidation, reduced glutathione (GSH), and glu-
tathione peroxidase (Gpx) levels were measured in the super-
natant [28].

2.6. RT-PCR

Total RNA was extracted from femorotibial joint tissues and
converted into cDNA using oligo(dT) primers. The qPCR was used
to measure mRNA expression with specific primers for CTX-II
(forward: 5-CGGGCRATGGCGCARAC-3; reverse: 5-TGCRCCGGTS
GTATTGCC-3). The 2�44CT method was used to quantitate the rel-
ative expression of CTX-II [29].

2.7. Western blot analysis

The proteins in the femorotibial joint tissue homogenate were
separated using SDS-PAGE and then transferred to PVDF mem-
branes. Membranes were treated with CTX-II primary antibodies
(ab34712, Abcam, Cambridge, MA, USA) overnight. Then, mem-
branes were washed and treated with horseradish peroxidase
(HRP)-IgG (ab97023, Abcam) for 60 min. Finally, the CTX-II protein
level was measured using a standard method [30].

2.8. Immunohistochemistry

At the end of the treatment, femorotibial joints were carefully
dissected and sliced into thin sections. Then, tissue sections were
incubated with CTX-II primary antibodies (ab34712, Abcam) over-
night. Next, sections were treated with horseradish peroxidase
(HRP)-IgG (ab97023, Abcam) for 60 min. The sections were viewed
under a fluorescence microscope [31].

2.9. Statistical analysis

The values are presented as the means ± standard error of the
mean. The differences between the control and galangin-treated
groups were evaluated using Student’s t-test and analysis of vari-
ance. A P-value <0.05 was considered statistically significant.

3. Results

In the present study, the therapeutic effects of galangin on OA
were analyzed in Sprague-Dawley rats. The progression of articular
cartilage degradation directly correlated with mCTX-II level, a type
II collagen. The mCTX-II level drastically increased 79% in OA rats
due to degradation of articular cartilage. However, the mCTX-II
level was significantly reduced by 5.7% and 35.9% after 14 consec-
utive days of treatment with 10 mg/kg and 100 mg/kg galangin,
respectively (Table 1, P < 0.05). The mCTX-II was significantly
reduced (39.1%) after 14 consecutive days of treatment with cele-
coxib, positive control drug (Table 1, P < 0.05). The low mCTX-II
level indicated the inhibition of cartilage degradation and protec-
tive effect of galangin against OA.



Table 1
The urine CTX-II (uCTX-II) normalized to total protein at 14 d.

Group uCTX-II
(ng/l)

Total protein
(g/l)

Ratio
(CTX-II/protein)

Normal control 362 ± 23 3.41 ± 0.25 106.2
OA 648 ± 27# 6.75 ± 0.46# 96
Galangin (10 mg/kg) 611 ± 21 7.13 ± 0.51 85.7
Galangin (100 mg/kg) 415 ± 29* 7.25 ± 0.34* 57.2
Celecoxib (30 mg/kg) 394 ± 26* 4.41 ± 0.25* 89.3

#P < 0.05 vs. Normal control; *P < 0.05 vs. OA.
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ROS from osteoblasts, synoviocytes and chondrocytes activates
the cartilage degradation due to ruptured joint homeostasis which
favors catabolic processes. The intracellular ROS level was
expressed as relative fluorescence units (RFUs). Compared with
the OA group, the galangin supplementation significantly reduced
the ROS level by 9.9% and 40.7% at 10 mg/kg and 100 mg/kg galan-
gin, respectively (Fig. 1, P < 0.05). Intracellular ROS level was signif-
icantly reduced (47.4%) after 14 consecutive days of treatment
with celecoxib (Fig. 1, P < 0.05). Pro-inflammatory mediators such
as cytokines and lipid mediators from osteoblasts, synoviocytes
and chondrocytes activates the cartilage degradation due to rup-
tured joint homeostasis which favors catabolic processes. Inflam-
matory markers were significantly increased in OA rats compared
with the normal controls. However, the galangin supplementation
significantly reduced IL-1b, IL-6, and TNF-a levels after 14 consec-
utive days of treatment (Fig. 2, P < 0.05). In addition, IL-1b, IL-6, and
TNF-a levels were reduced after 14 consecutive days of treatment
with celecoxib (Fig. 2, P < 0.05).

The imbalance and disturbance of pro-oxidant/anti-oxidant
leads to oxidative stress, which can be corrected through the addi-
tion of appropriate anti-oxidants. Compared with controls, the
galangin supplementation increased the catalase, SOD, Gpx, and
GSH levels after 14 consecutive days of treatment (Table 2,
P < 0.05). The celecoxib supplementation also increased catalase,
SOD, Gpx and GSH levels after 14 consecutive days of treatment
(P < 0.05, Table 2). Excessive lipid peroxidation is thought to have
an important role in the pathogensis of OA. Lipid peroxidation was
significantly increased in the OA rats. However, the galangin sup-
plementation significantly reduced lipid peroxidation to near nor-
mal range after 14 consecutive days of treatment (Table 2,
P < 0.05).
Fig. 1. Protective effects of galangin on intracellular reactive oxygen species (ROS) level
(OA); N = 6.
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The progression of articular cartilage degradation directly cor-
related with CTX-II level. The CTX-II mRNA and protein expression
levels were measured. The CTX-II mRNA expression was signifi-
cantly increased by 80% in the OA rats. However, 10 mg/kg and
100 mg/kg galangin supplementation significantly reduced OA in
rats by 8.3% and 23.9%, respectively (Fig. 3A, P < 0.05). The cele-
coxib supplementation significantly reduced the CTX-II mRNA
expression by 27.8% after 14 consecutive days of treatment
(Fig. 3A, P < 0.05). CTX-II protein expression was increased by
70% in the OA rats. However, 10 mg/kg and 100 mg/kg galangin
supplementation significantly reduced OA in rats by 5.3% and
17.1%, respectively (Fig. 3B-C, P < 0.05). The celecoxib supplemen-
tation also significantly reduced the CTX-II protein expression by
19.4% after 14 consecutive days of treatment (Fig. 3B-C, P < 0.05).
Immunohistochemistry results showed the CTX-II protein expres-
sion was significantly increased by 65% in the OA rats. However,
10 mg/kg and 100 mg/kg galangin supplementation significantly
reduced OA in rats by 7.3% and 18.2%, respectively (Fig. 4A-B,
P < 0.05). The celecoxib supplementation also significantly reduced
the CTX-II protein expression by 17.6% after 14 consecutive days of
treatment (Fig. 4A-B, P < 0.05). The low CTX-II level in tissue indi-
cates the inhibition of cartilage degradation and protective effect of
galangin against OA.
4. Discussion

In the present study, the therapeutic effects of galangin on OA
were analyzed in Sprague-Dawley rats. OA is a form of arthritis
due to the degradation of articular cartilage [1]. Allen et al. [3]
reported that joint injury, genetic factors, and development of
abnormal limb are the main causes of OA. The symptoms usually
develop gradually and affect the activities of daily living [4].
Researchers have reported that mechanical stress and inflamma-
tion (low-grade) induce OA [5]. McAlindon et al. [6] reported that
regular exercise and pain medications are helpful for treatment of
OA. Although several advances have been made in drug discovery
for the treatment of OA, successful therapies and drugs are not
yet available [7].

OA model induction was confirmed based on increased CTX-II
level and hypersensitivity, as well as histopathology results (data
not shown). The results confirmed the significant improvement
in pain tolerance and protection of articular cartilage. In addition,
in osteoarthritis (OA) rat model. #P < 0.05 vs. Normal control; *P < 0.05 vs. Control



Fig. 2. Protective effects of galangin on tumor necrosis factor-alpha (TNF-a), interleukin-1 beta (IL-1b), and IL-6 levels in osteoarthritis (OA) rat model. #P < 0.05 vs. Normal
control; *P < 0.05 vs. Control (OA); N = 6.

Table 2
Protective effect of galangin on antioxidant markers in monoiodoacetate (MIA) induced OA model rats.

Markers Normal control OA Galangin (10 mg/kg) Galangin (100 mg/kg) Celecoxib (30 mg/kg)

Catalase (U/ml) 10.9 ± 0.2 4.2 ± 0.2# 6.1 ± 0.2* 8.5 ± 0.3* 9.3 ± 0.3*
SOD (U/ml) 361.5 ± 13 138 ± 11# 193 ± 15* 272 ± 17* 296 ± 16*
GSH (nmol/ml) 0.55 ± 0.03 0.21 ± 0.01# 0.27 ± 0.04* 0.42 ± 0.05* 0.45 ± 0.05*
Gpx (U/ml) 0.43 ± 0.03 0.24 ± 0.01# 0.32 ± 0.01* 0.38 ± 0.01* 0.41 ± 0.01*
MDA (nmol/ml) 0.58 ± 0.02 1.18 ± 0.1# 0.91 ± 0.03* 0.73 ± 0.05* 0.68 ± 0.05*

#P < 0.05 vs. Normal control; *P < 0.05 vs. OA.

Fig. 3. Protective effects of galangin on CTX-II mRNA and protein expression levels in osteoarthritis (OA) rat model. A. CTX-II mRNA expression. B and C. CTX-II protein
expression. #P < 0.05 vs. Normal control; *P < 0.05 vs. Control (OA); N = 6.
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pain sensitivity was significantly inhibited after galangin treat-
ment. The mCTX-II level was significantly reduced after galangin
treatment, indicating galangin exerted protective effects on articu-
lar cartilage confirming the merit of galangin as an analgesic and
anti-inflammatory product. Castrogiovanni et al. [32] have
reported the nutraceutical supplements in the Management and
Prevention of OA through the reduction of CTX-II level. Dimitra
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et al. [33] have reported that the flavonoids reduced CTX-II level
in inflammatory arthritis.

Researchers have reported that inflammatory mediators includ-
ing NF-jB, IL-1b, and IL-6 play key roles in OA [34]. Infiltration
macrophages, chronic inflammation, and activated T cells in joint
tissues are the major pathological findings in arthritis [35]. Low
levels of cellular antioxidants and increased free radical production



Fig. 4. Protective effects of galangin on CTX-II protein expression in osteoarthritis (OA) rat model based on immunohistochemistry. A. The immunohistochemical images of
CTX-II. B. The relative CTX-II protein expression. #P < 0.05 vs. Normal control; *P < 0.05 vs. Control (OA); N = 6.
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in inflamed areas aggravate arthritis [36]. Oxidation of membrane
fatty acids and other chain reactions can lead to cell membrane
damage [37]. Gonzalez-Gay et al. [38] reported that IL-1b, IL-6,
and TNF-a are arthritis markers. Goldring and Gravallese [39]
reported that IL-1 and TNF-a are produced from synovium lining
cells and chondrocytes of affected joints. Supplementation with
galangin significantly inhibited these inflammatory markers.
Leyva-López et al. [40] have reported that the flavonoids are vital
modulators of pro-inflammatory cytokines, such as IL-1b, IL-6
and TNF-a. Kaempferol is one of the important flavonoid known
to have anti-inflammatory effect via suppressing IL-1b, IL-6 and
TNF-a levels in SW982 cells [41].

Researchers reported the MIA-induced rat model of OA is a fre-
quently used standard model to mimic human OA [42]. The induc-
tion of OA involves the injection of MIA in the femorotibial joint
area, which induces cartilage degradation and pain responses in
the ipsilateral limb. Researchers have reported the MIA injection
in the femorotibial joint area causes the disruption of chondrocyte
glycolysis via inhibition of glyceraldehyde-3-phosphatase dehydro-
genase, which leads to neovascularization, chondrocyte death, and
inflammation [43]. Based on these pathological features, the MIA-
induced rat model of OA is very useful for the investigation of anti-
inflammatory and analgesic activities. The imbalance and distur-
bance of pro-oxidant/anti-oxidant leads to oxidative stress, which
can be corrected through the addition of appropriate anti-
oxidants. In this study, the galangin supplementation increased
the catalase, SOD, Gpx, and GSH levels after 14 consecutive days of
treatment. Researchers have reported that the kaempferol is known
to have anti-oxidant effect via increasing catalase, SOD, Gpx, and
GSH levels in SW982 cells [41]. Amal et al. [44] have reported that
the galangin improves the anti-oxidant levels in diabetic rats.

Several researchers have reported the anti-hyperglycemic, anti-
inflammatory, anti-cancer, and anti-apoptotic activities of galangin
[15,16,17]. Kale et al. [26] reported the anti-arthritic activity of
galangin in arthritis-induced rats. Fu et al. yy[27] reported the pro-
tective effects of galangin against human rheumatoid arthritis via
downregulation of the NF-jB/NLRP3 pathway. CTX-II in tissue
was significantly reduced after galangin treatment, indicating that
galangin exerted protective effects on articular cartilage and con-
firming that galangin is an analgesic and anti-inflammatory
product.
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5. Conclusions

Galangin supplementation significantly reduced the mCTX-II
level compared with controls. Galangin treatment significantly
reduced ROS, lipid peroxidation, IL-1b, IL-6, and TNF-a levels, but
increased catalase, SOD, Gpx, and GSH levels. Galangin treatment
significantly reduced the CTX-II mRNA and protein expression
levels. In summary, supplementation with galangin was effective
against OA. The identification of potential therapeutic agents that
inhibit inflammation may manage and prevent OA.
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